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ABSTRACT: Efficiency of quantum transport through aggregates with
multiple endpoints or traps proves to be an emergent and a highly
nonequilibrium phenomenon. We present an exact approach for computing
the emergent time-scale and amount of extraction specific to particular traps,
leveraging a non-Hermitian generalization of the recently introduced state-to-
state transport analysis [Bose and Walters, J. Chem. Theory Comput. 2023,
19, 15, 4828−4836]. This method is able to simultaneously account for the
coupling between various sites, the many-body effects brought in by the
vibrations and environment held at a nonzero temperature, and the local
extraction processes described by non-Hermitian terms in the Hamiltonian. In fact, our non-Hermitian state-to-state analysis goes
beyond merely providing an emergent loss time-scale. It can parse the entire dynamics into the constituent internal transport
pathways and loss to the environment. We demonstrate this method using examples of exciton transport in a lossy polaritonic cavity.
The loss at the cavity and the extraction of the exciton from a terminal molecule provide competing mechanisms that our method
helps to unravel, revealing nonintuitive physics. This non-Hermitian state-to-state analysis technique contributes an important link to
understanding and elucidating the routes of transport in open quantum systems.

1. INTRODUCTION
Various molecular aggregates function as wires, transferring
charges and excitation from one end to the other. A prime
example of such transport happening in nature is the so-called
light-harvesting antenna complexes that absorb solar photons
converting them into excitons, which are then shuttled to the
reaction center where further reactions take place. The
robustness and remarkable efficiency of the transport have
made such photosynthetic systems a subject of extensive
study.1−4 Both from the perspective of fundamental under-
standing of these systems and the development of new
materials, it is important to be able to quantify and simulate
the efficiency of transport in these complex aggregates, which
entails accurate simulation of dynamics. The large number of
thermal degrees of freedom associated with the nuclear motion
modulates the transport in a nonperturbative manner.
Advanced wave function-based techniques like the density
matrix renormalization group5−7 or the multiconfiguration
time-dependent Hartree,8,9 while capable of handling non-
perturbative system−environment interactions, still do not
provide a practical route to simulation of these systems since
they are unable to efficiently handle the large number of
environmental modes that exist and the manifold of thermally
accessible states.

Simulations involving a reduced density matrix provide a
lucrative approach to understanding such nonequilibrium
transport. Heijs et al.10 and Cao and Silbey11 have explored
the relation between trapping time and efficiency, providing a

classical kinetic picture. Sener et al.12 and others have explored
the robustness of photosynthetic transport. Both approx-
imate13,14 and numerically exact methods15 have been used to
study the efficiency of quantum transport. Approximate
methods are, however, often plagued by ad hoc assumptions
that may fail for a particular system. In this context,
numerically exact simulations using methods like hierarchical
equations of motion16−20 or the quasi-adiabatic propagator
path integral21−27 prove to be useful. They however require a
full description of the endpoint from which the extraction
happens, the sites to which the extraction happens, and their
thermal environments to be able to determine the efficiency of
the transport. Many transport aggregates may even have more
than one endpoint or trap site. In such cases, this already
challenging parametrization requirement is followed by an
exponential growth of complexity due to a growth of the
system Hilbert space with every extra trap site. Additionally,
many processes like spontaneous emission from an excited
state or loss from a leaky cavity in the case of a polaritonic
system cannot be simply expressed as a well-characterized
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harmonic bath. These processes are naturally defined in terms
of empirical time-scales. The grand challenge, therefore, is
simulating the dynamics under empirical loss or extraction
processes using numerically exact methods and then
calculating the individual efficiencies of the different traps in
a multitrap transport process.

The recently developed path integral Lindblad dynamics
(PILD) framework28 allows for a combination of Lindblad
master equation to incorporate the loss or gain processes and
numerically rigorous path integrals to account for the effects of
the thermal environment. PILD has been used to study the
effect of loss processes on exciton transport dynamics in the
Fenna−Matthews−Olson complex28 as well as on linear
spectra of chiral aggregates.29 In many cases, however, the
use of non-Hermitian descriptions of the system coupled with
path integrals to incorporate the dissipative environment
provides an alternative route to study the dynamics.30 While
the nonunitarity of the propagators makes it inherently
unsuited for spectra represented by correlation functions that
couple the ground- and excited-state manifolds, non-Hermitian
descriptions can be more than adequate for the study of lossy
dynamics at a lower cost.

Understanding the time-scale of transport in aggregates with
multiple monomers, while important, turns out to be quite
challenging and nontrivial. Imagine an aggregate where, in the
simplest case, the exciton or other quantum particle is
extracted from one of the molecular sites, called the “trap”
site, with a “local” time-scale of T time units. This T unit,
which is the time-scale of extraction from an isolated site, is not
the time-scale that one would actually observe in the aggregate.
From the site of injection of the particle, it would have traveled
to all accessible sites, and the fraction that is on the trap site
would get extracted. This combination of nonequilibrium
processes gives rise to an emergent time-scale τ for the
extraction as observed when a particular site is initially excited.
It is this emergent time-scale, τ, that is of interest to us. The
problem becomes even more challenging when there are
multiple trap sites with different local extraction time-scales, Tj,
splitting the single exciton in different proportions. A relevant
example of this multitrap transport turns out to be a single
channel transport aggregate coupled to a lossy Fabry−Peŕot
cavity, with the loss at the cavity providing a different trapping
channel, which, while useless to the transport, needs to be
accounted for. The question then becomes one of assigning a
site-specific emergent time-scale τj and also understanding how
much of the exciton is extracted (Lj∞) from each such site.

In this work, we address this question of calculating the trap-
specific transport efficiency corresponding to a multitrap
transport aggregate in terms of the emergent site-specific
time-scale, τj, and the exciton extraction, Lj∞, by generalizing
the recently derived state-to-state analysis31,32 for Hamilto-
nians with non-Hermiticities, describing the rates of leakage
from the different traps. This allows us to partition the total
leakage of the system into the different sites, enabling us to
build an intuitive picture for the efficiency of transport for a
particular nonequilibrium initial condition without any ad hoc
approximations. The non-Hermitian state-to-state transport
method is developed in Section 2. Applications are
demonstrated in Section 3 using a polaritonic trimer as an
example, where an excitonic drain and the cavity loss provide
the two competing trap mechanisms. (A different setup of the
same polaritonic trimer is explored in Appendix A.) Finally, we
end with some concluding remarks in Section 4.

2. METHOD
Consider the following Hamiltonian that describes an open
quantum system:

H H H0 env= + (1)

where Ĥ0 describes the system and Ĥenv describes the
environment and its interaction with the system. For
concreteness, let us assume that the system is described by a
Frenkel Hamiltonian where each of the basis vectors |j⟩
represents the state where the quantum particle (charge or
excitation) is on the jth site or molecule, and every other site is
empty. The system, then, is generically described by the non-
Hermitian operator

H j j h j k k j( )
j

j
j k

jk0 = | | + | | + | |
< (2)

where hjk is the coupling or hopping parameter between
the jth and the kth sites, and j is the energy of the system
when the particle is on the jth site with the corresponding
lifetime. The real part of ϵj represents the site energy, while the
imaginary part of ϵj, wherever nonzero, represents the rate of
loss or extraction from the jth site corresponding to the “local”
decay time Tj with Im(ϵj) = − πℏ/Tj.

Some or all of the sites are individually coupled to thermal
environments

H H
j

j
env env

( )=
(3)

H
p

x c x S
2

1
2

j

b

jb
jb jb jb jb jenv

( )
2

2 2= +
(4)

where the bath on the jth site is coupled to the system through
the system operator Ŝj. Each bath of harmonic oscillators is
characterized by the oscillators’ frequencies ωjb and their
corresponding couplings cjb. These are related to the spectral
density

J
c

( )
2

( )j
b

jb

jb
jb

2

=
(5)

which can be estimated using molecular dynamics simu-
lations33,34 or directly from experiments.

Consider an aggregate that is initially in the electronic
ground state with the vibrations described by the thermal
Boltzmann distribution corresponding to the ground electronic
potential energy landscape. The aggregate ground states
typically are uncorrelated and can be simply thought of as
the direct product of the ground states of the constituent
monomers. At t = 0, due to Franck−Condon (FC) excitation
caused by a photon, one of the molecules, say the jth one, gets
excited, leaving all others in the ground state and all of the
nuclear distributions unchanged. This initial density matrix can
be written as ρ(0) = ρ̃(0) ⊗ e−βĤenv/Z, where ρ̃(0) = |j⟩⟨j|. The
time-evolved reduced density matrix for such a separable initial
condition can be written in terms of path integrals21,22

(augmented for non-Hermitian systems30) as
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1
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+ + + †

† ±

±

(6)

where Û = exp(−iĤ0Δt/ℏ) is the forward propagator and Û† =
exp(iĤ0

†Δt/ℏ) is the backward propagator. Notice that the
non-Hermiticity of the system (Ĥ0 ≠ Ĥ0

†) is taken into account
in the definition of the backward propagator. In the path
integral, the state of the system at the jth time point is sj±. The
Feynman−Vernon influence functional,35 F[{sj±}], captures the
system−environment interaction and makes the dynamics non-
Markovian. It is dependent upon the spectral density.34 In a
condensed phase medium, the decay of the bath correlations
with time allows for a truncation of the memory and iteration
beyond this memory length. However, the cost of the
simulation still increases exponentially with the memory
length. Here, we use the time-evolving matrix product operator
algorithm24 adapted for non-Hermitian systems to do the
simulations efficiently. This is implemented in the recently
released QuantumDynamics.jl package.36

Now, because of the non-Hermiticity of Ĥ0 and the
consequent nonunitarity of the time-evolution, Tr[ρ̃(t)] ≤ 1.
In fact, the trace is a monotonically decreasing quantity, and
for the single excitation subspace, the quantity L(t) = 1 −
Tr[ρ̃(t)] is the amount of excitation that has leaked out of the
system. As a simple example, consider excitation transport in
an excitonic trimer of identical monomers, each with a
constant nearest-neighbor electronic coupling hjk = − h = −
181.5 cm−1 δk,j+1. This is representative of typical electronic
couplings in bacteriochlorophyll chains that have an absorption
maximum around 800 nm.37−39 For the purpose of dynamics, a
datum-level shift in the excitation energies can be introduced.
We set Re(ϵj) = ϵ = 0 cm−1. An exciton drain is also
introduced on the third monomer with a decay time of T3 =
0.3 ps. Therefore, only Im(ϵ3) ≠ 0. The vibronic couplings and
the solvent interactions associated with each monomer are
modeled by an Ohmic spectral density

J( ) 2 exp( / )cutoff= (7)

where ξ = 0.121 and ωcutoff = 900 cm−1 corresponding to a
reorganization energy λ0 = 217.8 cm−1. The temperature is set
to 300 K. (This particular system will be used in different
contexts throughout the paper. For simplicity, we will refer to
it as the “excitonic trimer.”) The transport starts with
excitation on the first monomer, ρ̃(0) = |1⟩⟨1|. The loss L(t)
for the excitonic trimer is shown in Figure 1. The emergent
time-scale of loss, obtained with the model fit L(t) = 1 −
exp(−t/τ), is τ = 1.04 ps, which is significantly longer than the
local loss time-scale of T3 = 0.3 ps.

If we were interested in the transport through a system with
only one trap site, then considering the dynamics of L(t) as
demonstrated would be adequate. However, we want to
generalize this to molecular aggregates with multiple traps,
where we would like to extract the trap-specific efficiency. The
primary complication that arises with the previous argument of
the loss being the deviation of the trace of the density matrix
from unity applied to this case is that the loss can now occur
through more than one site. How do we determine the
partitioning of this total loss into the constituent single-site

losses? To achieve this, we generalize the concept of state-to-
state transfer31 and the related idea of coherence maps40−42 to
account for non-Hermitian systems.

The state-to-state framework31 begins by considering the
rate of change of population of the jth site

P t

t t
t j j

( )
Tr ( )

j
sys env= [ | |]

(8)

where ρ(t) is the time-evolved density matrix in the full
system-environment Hilbert space. Because the Hamiltonian is
non-Hermitian, the quantum Liouville equation gets reformu-
lated as

t
t

i
H t t H

( )
( ( ) ( ) )= †

(9)

Consequently, eq 8 can be written as

P t

t
i

H t t H j j
( )

Tr ( ( ) ( ) )
j

sys env= [ | |]†

(10)

i t H j j j j HTr ( )( )sys 0 0= [ | | | | ]†

(11)

using the fact that the projector, |j⟩⟨j|, commutes with Ĥenv.
Expanding the trace, we can partition this flux into the
following source sites:

P t

t
i

j t k k H j j H k k t j
( )

( ( ) ( ) )
j

k
0 0= | | | | | | | |†

(12)

For every k, the summand expresses the instantaneous rate of
transfer from k to j, and the total rate of change of the
population of the jth site is given as a sum over all k, as
expressed in eq 12. Integrating over time, one gets the total
partitioned transfer between the kth and the jth sites until time
t,

P t
i

t k H j j H k Re j t k

t k H j j H k Im j t k

( ) d ( ) ( )

1
d ( ) ( )

j k

t

t

0
0 0

0
0 0

= | | | | | |

| | + | | | |

†

†

(13)

For Hermitian systems, only the second term survives, and the
expression reduces to the previously derived expression for
state-to-state transport.31,32 The state-to-state analysis as done

Figure 1. Excitation loss L(t) = 1 − Tr[ρ̃(t)] in the excitonic trimer
with a single trap starting with an initial excitation ρ̃(0) = |1⟩⟨1| and
T3 = 0.3 ps.
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previously is closely related to the coherence maps developed
by Makri and co-workers.40−42 Similar terms also appear in
analyses involving flux networks, which have been used for
understanding and quantifying robustness of transport by Wu
et al.43 The extra physics corresponding to the non-Hermitian
losses are all incorporated in the first term. Because non-
Hermiticity is limited to the diagonal on-site terms, note that
the site-to-site transport (j≠k) is still governed only by the
s e c o n d t e r m , w h i c h b e c o m e s
P t t j H k Im j t k( ) d ( )j k

t2
0 0= | | | | . For the self-transfer

terms (j = k), the second term becomes zero because the
diagonal elements of the density matrix are real. However, the
fi r s t t e r m i s n o n z e r o w i t h
P t t Im j H j Re j t j( ) d ( )j j

t2
0 0= | | | | . Notice that if a site

has a loss term, Im ⟨j|Ĥ0|j⟩ < 0 and Pj←j(t) < 0, symbolizing a
loss from the site into the environment. Thus, the loss through
the jth site, Lj(t), is identified with Pj←j(t), and the total loss
can be expressed as a sum over all of the site-based losses. To
obtain the emergent time-scale, this can now be fit to the
following model (assuming a single exponential decay):

L t L t( ) (1 exp( / ))j j j= (14)

where τj is the emergent decay time for site j and Lj∞ is the net
loss through that site. These quantities will now be used to
characterize the efficiency of transport with a single time-scale.
Notice that Lj(0) = 0 and limt→∞Lj(t) = Lj∞.

A few additional words are due to eq 13. While this paper is
about transport efficiencies specific to drain sites, which are
exemplified by Hamiltonians with diagonal non-Hermiticities,
other kinds of non-Hermiticities are also ubiquitous in the
literature. One very common model is the Hatano−Nelson
model,44,45 which is a non-Hermitian tight-binding model
where the non-Hermiticity is caused by ⟨j|Ĥ0|k⟩≠⟨k|Ĥ0|j⟩* for j
≠ k.46 These are interesting because they show the so-called
non-Hermitian skin effect. If the system were described by
such a model, the state-to-state analysis described by eq 13
would still be valid.

3. NUMERICAL RESULTS
In order to demonstrate this non-Hermitian state-to-state
method, we consider a polaritonic system�the same excitonic
trimer of identical monomers as discussed earlier�now
coupled to a leaky Fabry−Peŕot cavity of energy ℏωc with a
coupling strength of Ω = 181.5 cm−1. The cavity mode energy
is set in resonance with the monomer’s vertical or FC
excitation energy, that is, ℏωc = ϵ = 0 cm−1. (The method
developed here is independent of the system. As an illustration,
another interesting setup is provided in Appendix A, where the
cavity is taken to be resonant with the molecular 0−0
transition.) The new system Hamiltonian Ĥ0′ is given by

H H i T c c j c c j( / ) ( )c c
j

0 0= + | | + | | + | |

(15)

where |c⟩ is the cavity mode. The cavity mode has a lifetime Tc
of 0.6 ps, corresponding to a decay rate of 6.9 me V, which is
smaller than the typical decay rate of 50 me V for plasmonic or
dielectric cavities.47 For ℏωc corresponding to 800 nm (typical
excitation energy of bacteriochlorophyll chains),37−39 the
quality factor (Q = ωcTc) of the cavity comes out to be

1413. Also, note that the cavity is not associated with any bath.
(This system will be called the “polaritonic trimer.”)

The initial excitation is again set to be on the first monomer,
ρ̃(0) = |1⟩⟨1|. The loss from the third monomer (exciton
drain) and the cavity is shown in Figure 2. As mentioned, the

total loss, L(t), is the sum of losses from the exciton drain,
L3(t), and the cavity, Lc(t). The emergent loss time-scales for
the exciton drain, τ3, and cavity, τc, are 0.89 and 0.90 ps,
respectively. In this case, a large majority (around 74%) of the
extraction happens through the molecular drain site.

It is pertinent at this point to ask how exactly the excitation
flows through the system to reach these leaky sites. A state-to-
state analysis is presented in Figure 3 to show the excitation
flows to the leaky sites along with their populations. Notice
that at very short times, the flow from the nonleaky sites, |1⟩
and |2⟩, into the cavity |c⟩ (Figure 3b) is more than that into
the exciton drain site |3⟩ (Figure 3a). This is because both |1⟩
and |2⟩ transfer population to the cavity site, whereas only |2⟩

Figure 2. Total (black) and trap-dependent (blue and red) excitation
losses in the polaritonic trimer starting with an initial excitation ρ̃(0)
= |1⟩⟨1| through an exciton drain of decay time T3 = 0.3 ps coupled to
a leaky optical cavity of lifetime Tc = 0.6 ps.

Figure 3. State-to-state analysis of excitation flows into trap sites and
their population dynamics for the polaritonic trimer.
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transfers to |3⟩ owing to the nearest-neighbor nature of the
excitonic Hamiltonian. However, very soon, the transfer from |
2⟩ to |3⟩ catches up. What is very interesting is that there is a
significant flow from the cavity site |c⟩ to the exciton drain site |
3⟩ from very early times (Figure 3c). All of this, along with the
leakages from |c⟩ and |3⟩, comes together to give the total
population dynamics that we can see in Figure 3d. Notice that
the initial buildup of population is higher in |3⟩ than in the
cavity, even though the leakage on the cavity in this case is
slower than that of the monomer.

Now, let us see what happens when the reorganization
energy of the monomeric environment increases. The losses
through the exciton drain L3(t) for the same system
Hamiltonian parameters but with different bath reorganization
energies are presented in Figure 4. (Note that the time-axis is

on the log-scale.) We change the Kondo parameter ξ (eq 7) to
change the bath reorganization energy λ. It is clear that the
amount of extraction through the third monomer (L3

∞)
increases with reorganization energy. As a corollary, this
would imply that the amount of leakage through the cavity is
decreasing. To understand this better, recall that the cavity
energy is set to be resonant with the FC (vertical) excitation
energy of the monomer. The higher the reorganization energy,
the greater is the shift between the ground and excited states of
each of the monomers because the reorganization energy per
“mode” is proportional to the Huang−Rhys factor and
consequently the relative displacement of the surfaces. In
Figure 5, a schematic is shown of the current situation.
Suppose that |e⟩ is the excited-state surface for the lower
reorganization energy environment and |e′⟩ is the one for the
higher reorganization energy environment of a monomer.
Notice that d′ > d. Now, to ensure that the vertical excitation
energy remains constant, the surface of |e′⟩ has to be stabilized
more. This means that the minimum of the excited-state
potential energy surface becomes increasingly detuned from
the cavity energy, hampering the transport into the cavity
mode from the monomers.

There is a completely different parallel picture for under-
standing the changes in L3

∞ with the reorganization energy.
While we were considering the monomers to be the “units” up
to now, our system is, in fact, an excitonic aggregate in a cavity.
For such aggregates, these monomeric states are diabatic, and
the cavity can equivalently be thought of as coupling to the
aggregate adiabatic eigenstates. Therefore, in addition to the
shifting of the monomeric potential energy landscape with

reorganization energy, an added complication is deciding
where the bright states of the aggregate lie. For an H-like
aggregate, the bright state has a higher energy than the
monomeric energies, whereas for a J-like aggregate, it is lower.
Consequently, the level of detuning that the cavity mode
suffers from, from the bright adiabate, is also dependent on the
nature of the aggregate. In our case, the excitonic aggregate is
J-like, which exaggerates the detuning that is already caused by
the increasing reorganization energy. As a demonstration of
this argument, we provide two pieces of evidence. First, we
have simulated the spectrum of the lossy excitonic trimer using
our PILD method,28,29 which is shown in Figure 6. Remember

that the cavity has energy ℏωc = ϵ, which is at the origin of the
x-axis in the plot. On increasing the reorganization energy, the
maximum of the peak gets red-shifted significantly, thereby
increasingly detuning the cavity from the bright state. Next, in
Figure 7, we show the population of the cavity site. Notice that
the accumulation of excitation in the cavity mode decreases
with an increasing reorganization energy on the monomers,
which is a result of this detuning.

Having discussed the increase in L3
∞ as a function of λ, we

turn our attention to the emergent time-scales. While the initial
slopes of the loss curves in Figure 4 are not the same, they are

Figure 4. Loss through exciton drain L3(t) with increasing bath
reorganization energies, λ, and the emergent time-scales τ3 (inset) for
the polaritonic trimer.

Figure 5. Schematic depicting a shift in excited energy surfaces for
two baths differing in their reorganization energies. The |e⟩ surface
corresponds to the higher reorganization energy bath than the |e⟩
surface leading to a larger displacement d′ > d.

Figure 6. Absorption spectra for the linear excitonic trimer for
different reorganization energies, λ, normalized with respect to the
maximum intensity for the spectrum corresponding to λ = 0.5λ0. The
vertical dotted lines mark the energy corresponding to ϵ − λ, that is,
the energy of the molecular 0−0 transition.
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similar. After the initial transients that make the losses higher
for smaller reorganization energies on a time-scale of hundreds
of femtoseconds, the slopes increase with the reorganization
energy. This leads to a crossover of the loss curves around 400
fs. However, this “small” difference of gradients at short times
is not substantial enough to overcome the difference in the
long time loss amounts, L3

∞. Thus, the emergent time-scales, τ3,
in these cases, are dominated primarily by the L3

∞ and increase
with the reorganization energy, λ.

It should be noted here that it is not necessary that the loss
dynamics have a single time-scale. In fact, the exponential fit to
the loss function, eq 14, begins to fail when the reorganization
energy of the environment decreases beyond a certain limit
due to a preponderance of transients in the dynamics. This
parallels the failure of the rate theory to predict the actual
dynamics when transients are important.48 For a particular
example, notice the “bumps” in the low reorganization energy
loss curves in Figure 4 at around 100 fs. Those are deviations
from single time-scale dynamics. However, in this particular
example, these deviations are small enough that the overall loss
dynamics is still well-approximated by a single time-scale
dynamics. There could be other examples where the deviations
are even more significant. The present non-Hermitian state-to-
state analysis method can be used even when this happens. It is
just that we would not be able to talk in terms of the emergent
time-scales and would have to directly study the loss curves
similar to the ones in Figure 4.

As a final bit of exploration, let us see how the transport
efficiency of the exciton drain gets affected vis-a-̀vis the change
in cavity properties�monomer−cavity coupling, Ω, and cavity
leakage rate, γc (= 1/Tc). It is more meaningful to vary these
parameters relative to their monomeric counterparts�h and γ3
(= 1/T3). Figure 8a,b shows the change of L3

∞ and τ3,
respectively, as functions of γc/γ3 for different cavity couplings
Ω/h keeping the environment at a constant reorganization
energy of λ0. First, consider the amount of excitation extracted
from the third monomer, L3

∞, shown in Figure 8a. As a
function of γc/γ3, it goes down monotonically because for the
same Ω/h, when γc increases relative to γ3, then more loss
happens out of the cavity. What is interesting is that for a
particular γc/γ3, the value of L3

∞ decreases on increasing Ω/h.
To understand this better, we plot the excitonic population of
the third monomer and the cavity as a function of time for the
three values of Ω/h at a constant γc/γ3 = 0.25 in Figure 8c,d,
respectively. Notice that as Ω/h increases, the amount of
population buildup on the cavity increases, but the
accumulation on the third monomer decreases. One can

intuitively understand this by considering the couplings in the
aggregate and the relative flows. There are three connections
into the cavity state each with a coupling of Ω, and there are
two connections into the third monomer, one with Ω and one
with h. At time t = 0, the excitation is localized on monomer 1.
As it starts to flow, the excitation finds one route with a
coupling of h and another route with a coupling of Ω > h.
Consequently, more excitation flows into the cavity via the
channel with a strength Ω. Thereafter, depending on the
relative magnitudes of Ω and h, from every monomer, there is
a greater amount of excitation that leaks into the cavity than
into the next monomer, leading to the observation. This
correspondingly means that there is comparatively less
population to be extracted out of |3⟩, leading to a decrease
in L3

∞.
In Figure 8b, we see that the τ3 values for a constant Ω/h

decrease monotonically with γc/γ3 as well. Probably, this is
related to having a lower amount of exciton extracted from the
molecular drain (L3

∞). We conclude our discussion of this
particular problem by pointing out a surprising observation for
future exploration: the τ3 curves for different Ω/h values in
Figure 8b all intersect at a point for γc/γ3 = 0.25. This raises
several very interesting questions: Why do we have this point
of intersection? Do polaritonic aggregates of different sizes all
have similar points of intersection? How does it change with
changing the bath on each site? These interesting problems
will be dealt with in a future publication using the non-
Hermitian state-to-state analysis technique developed in the
current work.

Figure 7. Population of the cavity site, Pc(t), for different
reorganization energies, λ, in the polaritonic trimer.

Figure 8. Analysis of loss mechanisms in the polaritonic trimer. Line
color denotes the relative coupling strength: blue line, Ω/h = 1.0;
orange line, Ω/h = 1.5; green line, Ω/h = 2.0. Subfigures (a) and (b)
study the system as a function of changing relative loss rates.
Subfigures (c) and (d) analyze the populations of the third monomer
and the cavity for different Ω/h values at a constant γc/γ3.
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4. CONCLUSIONS
In this paper, we have developed a generalization of the state-
to-state analysis31,49 to account for non-Hermitian systems
coupled with thermal environments. This development
additionally enables us to analyze the endpoint or trap-specific
efficiency of a multitrap transport aggregate, where the
extraction is encoded through diagonal imaginary terms in
the system Hamiltonian. This method is exact when paired
with exact dynamics and makes no additional approximations.
While here we have explored the time-scales of transport, there
can be several cases where the extraction process may not be
appropriately described by a curve with a single time-scale. For
such cases, the current non-Hermitian state-to-state analysis
technique can yield the full dynamics of the extraction. In
addition, being a generalization of the state-to-state analysis
technique,31 this method also allows us to explore the exact
pathways of transport under these leakages. In the examples
shown, we demonstrated how the non-Hermitian state-to-state
method can be used to understand transport in a polaritonic
aggregate, where the exciton is extracted from one of the
molecules, and the cavity is lossy. Of course, in such a case, any
loss of the excitation as a photon through the cavity does not
count toward transport. Using our non-Hermitian state-to-
state method, we are able to partition the total loss into the
loss through the cavity and through the molecule. In the
process, we reveal a wealth of rich physics. While the examples
shown here used exact dynamics generated using path
integrals, one could as well use approximate semiclassical or
perturbative methods to generate the dynamics. This method
promises to be a powerful analysis tool for understanding the
dynamics of complex systems.

■ TRANSPORT EFFICIENCY FOR THE CAVITY
RESONANT WITH MOLECULAR 0−0 TRANSITION

The analysis for the polaritonic trimer presented so far has the
cavity resonant with the molecular or monomeric FC
excitation (ℏωc = ϵ = 0 cm−1). A similar analysis can be
done when the cavity is made resonant with the molecular 0−0
transition (ℏωc = ϵ − λ = − 217.8 cm−1, where λ is the
reorganization energy corresponding to the molecular environ-
ment). For convenience, we will now refer to these cases as FC
and 0−0, respectively. It is to be noted that the state-to-state
method is independent of the excitation to which the cavity is
set in resonance with.

In Figure 9, the losses through the exciton drain, cavity, and
the total loss in the polaritonic trimer are presented for the
cavity in resonance with the molecular 0−0 transition along
with that of the FC case as depicted in Figure 2. The emergent
loss time-scales in the 0−0 case for the exciton drain, τ3, and
cavity, τc, are 0.82 and 0.86 ps, respectively. In this case, like
the FC case, the majority of the loss (around 60%) occurs
through the exciton drain, which, however, is less than the
corresponding 74% in the FC case. The loss through the cavity
increases in the 0−0 case compared to the FC case. This
happens because the cavity is comparatively less detuned from
the vibronic absorption maximum of the excitonic trimer in the
0−0 case, making excitation flow into the cavity more facile as
compared to the FC case.

Next, consider the analysis of the loss curves as a function of
the reorganization energy that we did for the FC case. In that
case, we have discussed why the level of detuning of the cavity
vis-a-̀vis the absorption maximum is highly dependent on the

reorganization energy. What happens now that we are
considering the cavity to be resonant to the molecular 0−0
transition? The energy of the molecular 0−0 transition, as
mentioned before, is ϵ − λ, which already “accounts for” the
reorganization energy. In the context of the schematic in
Figure 5, the molecular 0−0 transition is the energy gap
between the bottom of the red surface and the bottom of the
blue surface. The molecular absorption maximum will be at an
energy higher than the 0−0 transition but significantly lower
than the FC transition energy. Therefore, the level of detuning
that we will see as we change the reorganization energy is
going to be smaller. In Figure 10, we show a comparison of the

loss curves through the exciton drain, L3(t), for the different
cases. As expected, the band of L3

∞ for the case when the cavity
is FC resonant is much broader than that of the 0−0 resonance
case.

In the body of the paper, we have already justified the order
of the curves for the FC resonant case, Figure 10a or Figure 4.
The value of L3

∞ increases with the reorganization energy in
this case. However, notice that the order is reversed for the 0−
0 resonant case in Figure 10b. To understand this better, we
revisit Figure 6. Focus on the vertical dotted lines now, which
are at ϵ − λ or the energy of the molecular 0−0 transition. For
all of the different reorganization energies considered, this is
much closer to the energy of the absorption maximum than the
FC excitation energy, in accordance with our argument. This
ensures that the band spanned by L3

∞ in the case of the 0−0
resonant cavity is smaller than for the FC resonant cavity. To
understand the changed order of L3

∞ with respect to λ in Figure

Figure 9. Excitation loss through the exciton drain L3(t) (blue) and
the cavity Lc(t) (red) in the polaritonic trimer starting with an initial
excitation ρ̃(0) = |1⟩⟨1| for an exciton drain of decay time T3 = 0.3 ps
and a leaky optical cavity of lifetime Tc = 0.6 ps resonant with the FC
(solid) and molecular 0−0 (dashed) excitations. The total loss
Ltotal(t) is depicted in black.

Figure 10. Dependence of L3
∞ for the FC resonant and the molecular

0−0 resonant cavities. Data for subfigure (a) are identical to those in
Figure 4.
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10b, two other factors need to be discussed. The distance
between the molecular 0−0 transition energy and the
absorption maximum in Figure 6 decreases monotonically
with the increasing reorganization energy from 243 cm−1 for λ
= 0.5λ0 to 124 cm−1 for λ = 2.5λ0. Additionally, the peak
broadening also increases with increasing λ. This further
decreases the effective detuning of the cavity. As a result of the
combination of the two effects, the cavity becomes more in
resonance with the bright state as the reorganization energy
increases and is able to funnel off increasing amounts of
exciton. Thus, L3

∞ decreases with increasing λ, and we see the
pattern in Figure 10b.
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