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ABSTRACT: Path integrals offer a robust approach for simulating open quantum dynamics with
advancements transcending initial system size limitations. However, accurately modeling systems
governed by mechanisms that do not conserve the number of quantum particles, such as lossy cavity
modes, remains a challenge. We present a method to incorporate such empirical source and drain
mechanisms within a path integral framework using quantum master equations. This technique facilitates
rigorous inclusion of bath degrees of freedom while accommodating empirical time scales via
Lindbladian dynamics. Computational costs are primarily driven by the path integral method with
minimal overhead from Lindbladian terms. We use it to study exciton transport in a four-site Fenna−
Matthews−Olson model, examining the potential loss of the exciton to the reaction center. This path
integral Lindblad method promises an enhanced ability to simulate dynamics and will be fundamental to
simulation of spectra in diverse quantum processes in open systems.

Simulation of the dynamics of open quantum systems is the
holy grail of chemistry. The exponential scaling of quantum

mechanics with the number of degrees of freedom combined
with the difficulty of describing thermal dynamics contributes to
the unparalleled challenges in simulating the dynamics of bulk
systems. Methods based on propagating wave functions, such as
the density matrix renormalization group (DMRG),1−3 the
family of multi-configuration time-dependent Hartree
(MCTDH) method,4,5 and Gaussian wavepacket dynamics,6−8

cannot handle a continuum of vibrational modes or solvent
degrees of freedom held at a constant temperature.
Methods based on reduced density matrices (RDMs) can

overcome many of these difficulties. After judiciously separating
the problem into a “system” of interest and the “environment”,
these methods aim to solve the dynamics corresponding to the
systemwhile incorporating the effects of the environment.While
this system−solvent separation is critical in decreasing the
dimensionality of the system space, it makes the dynamics non-
Markovian. Approximate simulations of RDMs can be done
quite simply using the perturbative Bloch−Redfield master
equation9,10 or through the empirical Lindblad master
equations.11,12 However, the results obtained from such
simulations are not systematically improvable. Most crucially,
simulations involving these twomethods usually assume that the
dynamics can be approximated in a Markovian fashion. These
shortcomings are alleviated for a certain class of problems using
numerically exact methods for simulating the dynamics. The
hierarchical equations of motion (HEOM)13−15 and the quasi-
adiabatic propagator path integral (QuAPI) method16,17 based
on the Feynman−Vernon influence functional18 are the most
common mathematically rigorous frameworks available.

Over the years, much work has gone into improving the
performance of these methods. The original HEOM was
primarily limited to handling Drude−Lorentz spectral densities.
Various approaches are now being developed to handle other
spectral densities, including approaches involving Chebyshev
polynomials19,20 and improvements using tensor networks.15

Similarly, QuAPI has been developed in a variety of manners to
improve the performance. Notable among these are the small
matrix decomposition of path integral (SMatPI),21 which is
conceptually similar to the transfer tensor method (TTM) based
on dynamical maps for non-Markovian processes,22−24 and
methods based on tensor networks.25−28 Tensor network
algorithms have also been extended to handle extended open
quantum systems29 and simulation of thermal correlation
functions.30 All of these developments have enabled simulations
of larger systems up to longer times.31−33

Although lucrative and now significantly more affordable,
application of these rigorous methods requires detailed analysis
of the system−environment interactions resulting in calculation
of spectral densities. This may not always be possible. For
instance, spontaneous emission of excited states of molecules in
systems with Frenkel exciton transport or polaritonic dynamics
in the presence of leaky cavities is not easily characterized by a
spectral density. Similarly, it becomes difficult to describe the
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presence of source terms for quantum particles in an open
quantum system. These phenomena can be modeled using the
empirical Lindblad master equation11,12 or using non-Hermitian
descriptions of the system. While the empirical Lindblad
approach is incompatible with rigorous path integral simu-
lations, path integral calculations have recently been done with
non-Hermitian systems.34 However, the non-Hermitian dynam-
ics, while simple to implement, is non-unitary. Consequently,
the trace of the density matrix is not conserved, leading to
spurious artifacts in the most general case. Consider, for
example, the particular case of spontaneous emission from the
singly excited state. If a simulation is done in the space of the
excited and ground states, the population of the ground state is
supposed to increase as the excited state population decreases,
keeping the trace conserved. When this process is simulated
using non-Hermitian systems, the decay of the excited state is
not accompanied by a corresponding increase of the ground
state population (this is demonstrated in the Supporting
Information). Quantities like absorption spectra, which are
obtained as a Fourier transform of the dipole moment
autocorrelation function and connect the ground state with
the singly excited manifold, would consequently suffer from
spurious effects of the population of the ground state not
growing commensurate to the leakage of the excited state.
The Lindblad evolution is unitary and does not suffer from

this problem. The resultant dynamic maps are known to be
completely positive and trace-preserving. However, it does not
lend itself to a simple incorporation in the path integral
framework. One approach to incorporating everything might be
to map the well-characterized environment onto other Lindblad
operators and then solve the Lindblad master equation for
everything. While this treats everything on the same footing, this
approach has the disadvantage of making the dynamics
approximate. We no longer even account for the thermal
environment in a numerically exact manner. Implicit in the
Lindblad treatment is the Markovian approximations to the
dynamics and the assumption of a weak system−environment
coupling. The other complementary approach would be to try to
postulate a bath and a spectral density for the processes for
which we do not have the details. If one does that, then there is a
lot of guesswork associated with the forms of the spectral density
and the nature of the bath. These questions are not typically
well-settled. Therefore, we effectively not only increase the
complexity of the simulation by adding completely fictitious
baths to describe the processes that are not simple to
parametrize but also add extra artifacts brought in by our
choices of these baths.
The ideal approach, therefore, is neither of the two discussed

above but to resort to a combination of both. We want to
describe the open quantum system in a fully non-Markovian and
non-perturbative manner while incorporating the Lindblad
master equation into it without any additional cost. This work
aims at this fundamental goal. This hybrid approach has the
advantage of being (1) ideal in terms of computational costs,
because solving the Lindblad master equation is minimal
compared to the full path integral simulation, and (2) giving the
optimally accurate dynamics according to our ability to
characterize the processes. A similar motivation has led to the
development of a recent classical trajectory-based method by
Mondal et al.35 that incorporates the Lindblad loss into the
partial linearized density matrix dynamics.36,37 The path integral
Lindblad dynamics developed here is independent of the
method of simulation of the open quantum dynamics and allows

for a decoupling of the path integral simulations for incoporation
of the environment degrees of freedom from the solution to the
Lindblad operators. We develop this path integral Lindblad
master equation approach by going through the Nakajima−
Zwanzig master equation,38,39 via the transfer tensor method.22

This decoupling has the added advantage of making the cost of
adding different Lindblad jump operators to a system merely
involve solving the master equation. The path integral
simulation does not need to be redone.
Consider an open quantum system described by the

Hamiltonian

= +H H H0 env (1)

where H0 is the system Hamiltonian and Henv is the system−
environment Hamiltonian. Also, suppose that, while most of the
environment has been properly described in Henv, there are
features like spontaneous decay, leakage of quantum particles,
etc. that cannot be characterized accurately using thermal baths.
For these processes, additionally, the system is also subject to
interactions parametrized by a set of Lindblad jump operators Li.
We want to understand the dynamics of the system under the
open quantum Hamiltonian, eq 1, and under the action of the
Lindblad jump operators.
If the initial state can be written in a separable form

=(0) (0)
Ztotal

e Henv
, the time evolution of the reduced

density matrix corresponding to the system in the absence of the
Lindblad jump operators can be simulated using path integrals
as16,17
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T h e b a r e f o r w a r d − b a c k w a r d p r o p a g a t o r ,
=t iH t iH t( ) exp( / ) exp( / )0 0 0 , is the dynamical map

corresponding to the bare system; sj± is the state of the system at
the jth time point; and F[{sj±}] is the Feynman−Vernon
influence functional18 along the path sj±. The influence is
calculated in terms of the η coefficients,16,17 which are
discretizations of the bath response function.40 The influence
functional makes the dynamics non-Markovian by depending
upon the entire history of the path. In condensed phases, this
dependence upon the history dies away and can be truncated at
some finite memory length. The cost of these calculations, when
done in a naiv̈e manner, grow exponentially with the number of
time steps within memory, d( )K2 , where d is the system
dimensionality and K is the memory length. To obtain the
reduced density matrix beyond the memory length, τmem = KΔt,
various iteration techniques can be used, which reduce the
computational complexity from exponential to linear with time.
Recent developments have focused on improving the perform-
ance of these path integral calculations.25,27,29,41

These path integral simulations do not allow for the simple
incorporation of the Lindblad jump operators. To incorporate

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.4c00489
J. Phys. Chem. Lett. 2024, 15, 3363−3368

3364

https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.4c00489/suppl_file/jz4c00489_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.4c00489/suppl_file/jz4c00489_si_001.pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.4c00489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


them, we start with the Nakajima−Zwanzig master equa-
tion.38,39 The reduced density matrix of the system, ρ(t),
simulated using eq 2, also satisfies the Nakajima−Zwanzig
master equation

= +t i t t( ) ( ) ( ) ( )d0
0

mem

(4)

where τmem is the length of the non-Markovian memory and
· = [ ·]H ,0 0 is the system Liouvillian. Generally, obtaining the

memory kernel is a tricky affair. Much work has gone into trying
to obtain these memory kernel elements accurately from either
approximate42,43 or numerically exact44 quantum dynamical
simulations of the evolution of the reduced density matrix.
A simpler and more aesthetically pleasing route was proposed

by Cerrillo and Cao.22 They showed that, from the dynamical
maps that relate the time-evolved density matrix ρ(t) to the
initial density matrix ρ(0) under the influence of the
environment, =t t( ) ( ) (0), one can derive the transfer
tensors, Tk, that satisfy

=
=

t T t( ) ( )n
k

L

k n k
1 (5)

The dynamical maps, including the environment effects, can be
simulated using eq 2 by not contracting the initial reduced
density matrix. The transfer tensor method (TTM) has already
been used with path-integral-based simulations.33,45 It has also
been shown that, for short time steps, the transfer tensors can be
related to the memory kernel by22

= +T i t t(1 )k k k0 ,1
2

(6)

For longer time steps, this would break down because it is based
on a discretization of the time derivative of ρ(t) correct to t( )
. A better mapping can be obtained by converting to the reduced
density matrix to the interaction picture with respect to the bare
system Hamiltonian, H0, in terms of the bare dynamical map,

t( )0 ,

=t t t( ) ( ) ( )0
1

(7)

where

= i
k
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The equation of motion for the reduced density matrix in this
interaction picture becomes

=t t t t( ) ( ) ( ) ( ) ( )d0
1

0
0

mem

(9)

which upon time-discretization leads to

= +
=
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With the conversion of eq 5 to the interaction picture, the
corresponding equation in terms of the transfer tensors becomes

=
=

t t T t t( ) ( ) ( ) ( )n n
k

L

k n k n k0
1

1
0

(11)

Comparing eqs 10 and 11, we obtain

= +T t t( )k k k0 ,1
2

(12)

as an analogue of eq 6.22 Themain benefit is that this allows us to
take advantage of the larger time steps enabled by ideas like the
quasi-adiabatic propagator.46 Earlier work involving evaluating
the memory kernel from numerically exact quantum dynamical
simulations44 required interpolation of the path integral results,
which can bring in errors if not done carefully.
To incorporate the Lindbladian jump operators, we modify

the Nakajima−Zwanzig master equation for the reduced density
matrix, eq 4, as

= +
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where the superscript (L) denotes that this equation involves the
empirical terms from the Lindbladian master equation.
Let us, once again, cast the density matrix in an interaction

picture vis-a-̀vis the bare system evolution, eq 7, which in the
presence of the jump operators satisfies

=
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Consequently, we have the following expression for the time
evolution of the reduced density matrix:
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+ { }

=

† †i
k
jjj y

{
zzz

t t

L L L L t

( )

1
2

,

n
L

n
L

j

L

j n j
L

j
j n

L
j j j n

L

( )
0 1

( )

1

( ) 2

1
( )

1
( )

(15)

which along with eq 12 forms the final results of this letter. The
transfer tensors may be obtained directly from the augmented
propagators or dynamical maps produced by any path integral
technique.16,21,25,27 The main complexity of the simulation is
primarily limited to this path integral simulation. The solution of
eq 15, once the memory kernel was evaluated, is extremely
cheap. The path integral simulation does not need to be rerun
even if the Lindbladian jump operators are changed.
As an example of this methodology, consider the four-site

model of the Fenna−Matthews−Olson complex, Figure 1,
studied in ref 48. This model is described by the vibronic
Hamiltonian

= +H H H0 env (16)
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(18)

where H0 is the electronic “system” Hamiltonian and Henv
describes the environment and its interaction with the system.
This environment consisting of molecular nuclear motion and
motion of the protein scaffolding is mapped to site-specific baths
of harmonic oscillators. The frequency and coupling of the jth

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.4c00489
J. Phys. Chem. Lett. 2024, 15, 3363−3368

3365

pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.4c00489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


bath mode corresponding to the kth chromophoric site are
characterized by a spectral density

=
=

J
c

m
( )

2
( )k

j

N
jk

jk jk
jk

1

2osc

(19)

which can be obtained from classical trajectory-based
simulations of bath correlation functions. The spectral density
corresponding to the molecular vibrations and protein
scaffolding was characterized by Maity et al.47 using quantum
mechanics (QM)/molecular mechanics (MM). The spectral
densities corresponding to the first four sites are shown in Figure
2. Also note that |j⟩ corresponds to the singly excited state, where
the jth molecule is excited and all of the others are in the ground
state.

Now, this Hamiltonian describes a Frenkel−Holstein model
and, therefore, does not account for the extraction of the exciton
at chlorophyll site number 3. We use the path integral Lindblad
dynamics approach developed here to incorporate this feature.
First, we need to expand our Hilbert space by also considering |
g⟩ corresponding to the state in which all of the chlorophyll
molecules are in the ground state. In this case, there is only one

jump operator, L = γ|g⟩⟨3|, which is a non-Hermitian lowering
operator that de-excites the third molecule. The time scale in
which this effect happens is given by 1

2 (the effect of this jump

operator and the identification of the time scale with 1
2 is

demonstrated for a single molecule in the Supporting
Information).
The base dynamics without the Lindblad jump operators was

first calculated with a time step ofΔt = 3 fs. The dynamical maps,
t( ), were generated using the time-evolving matrix product

state (TEMPO) algorithm25,28 as implemented in the
QuantumDynamics.jl package45 up to a maximum time of
300 fs. For these calculations, the full path simulation was done
up to a memory length of τmem = KΔt = 150 fs, beyond which an
iterative algorithmwas used to generate t( ) (a naiv̈e calculation
of this problem would need to sum over 2550 ≈ 7.9 × 1069, and
the tensor network approach manages to make this computation
totally feasible). The transfer tensors were derived from these
data and used to propagate the dynamics up to a time of 5 ps via
eq 5. The dynamics corresponding to ρ(0) = |1⟩⟨1| is shown in
Figure 3. The Frenkel model of exciton transport conserves the

number of excitons. Consequently, when we start with an initial
excitation on ρ(0) = |1⟩⟨1|, the dynamics remain in the manifold
of singly excited states. The population of the ground state
remains identically zero throughout the dynamics.
Now, we add the Lindbladian jump operator with a range of

different time scales, 1
2 = 2.5, 5, 10, and 200 ps. We solve eq 15

using the memory kernel obtained from the transfer tensors in
the previous step. The results are listed in Figure 4. Once the
memory kernel has been generated from the path integral
dynamical maps, the incorporation of the Lindbladian jump
operators is as costly as the solution of eq 15. As expected, the
rate of the growth of the population of the ground state, |g⟩, is
directly related to the time scale of the decay. However, this
decay of the third site leads to subtle changes in the population
dynamics of the other sites as well. These are quantitatively
taken into account. The dynamics under a very long decay time
of 1

2 = 200 ps, Figure 4d, is shown to demonstrate the

asymptotic convergence of the path integral Lindblad dynamics
to the path integral dynamics in the absence of any Lindblad
jump operators (Figure 3). Finally, probably the change as a
result of the decay from the third site is the greatest if we take an
initial condition localized on the fourth site (ρ(0) = |4⟩⟨4|). As

Figure 1. Fenna−Matthews−Olson complex, with four-site coarse
graining as indicated by the colors.

Figure 2. Site-specific and average spectral densities (black solid line),
obtained by Maity et al.,47 characterizing the chemical environment of
the chromophores.

Figure 3. Dynamics of the excitonic population without the
Lindbladian jump operators.
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shown in Figure 5, the rise in the other sites is all but quenched
when the decay is incorporated.

In this case, once the memory kernels were obtained from the
initial path integral simulations via the transfer tensors, adding
any jump operator or changing the strength of the jump operator
amounts to resolving eq 15 with the corresponding changes.
Because this is just a solution of a difference equation, it is
effectively free and can be done with great efficiency.
In this paper, we have developed a method for doing path

integral Lindblad dynamics. The goal is to unify the rigorous
path integral methods for the environment degrees of freedom
that can be properly characterized in terms of spectral densities
with the Lindblad master equation approach of dealing with
phenomena that are described only by some empirical time
scales. This approach brings together the best of both worlds,
maximizing the numerical accuracy of the simulations while not
incurring any additional costs. This path integral Lindblad
dynamics method can be used to incorporate a variety of
empirically specified phenomena like spontaneous emission
lifetime of states, leakage from particular states, and others, with

rigorous path integral descriptions of dynamics under the
influence of thermal environments specified by spectral
densities. While the example considered here uses only a drain
or loss term, it is trivial to study systems with a source term by
suitably choosing the jump operators. This combination of
Lindblad terms with path integrals can be done at no extra cost,
because the solution to the master equation is negligible in
comparison to the path integral simulation. Even changing the
Lindbladian jump operators to model different processes can be
done extremely efficiently once the memory kernels have been
initially obtained.
While this method is already very useful in studying realistic

problems, future developments are able to leverage its power
even more significantly. We will extend the path integral
Lindblad equations to study the changes brought about by the
presence of thermal environments by phenomena represented
by Lindblad jump operators. For example, it would be
interesting to understand how the presence of a leaky cavity
changes the absorption spectrum and transfer pathways of an
exciton−polaritonic system. The effects of a combination of
source and loss terms on the dynamics of an open quantum
system are also be studied. The path integral Lindblad dynamics
method has been implemented in the QuantumDynamics.jl
package45 for simulating the dynamics of open quantum
systems. Finally, this idea transcends the use of path integral
methods. While in this work, the path integral has been used to
generate the dynamical maps that were used to obtain the
memory kernel, in principle, any other method can also be used
just as easily.
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