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ABSTRACT: Understanding the pathways taken by a quantum
particle during a transport process is an enormous challenge. There
are broadly two different aspects of the problem that affect the
route taken. First is obviously the couplings between the various
sites, which translates into the intrinsic “strength” of a state-to-state
channel. Apart from these inter-state couplings, the relative
coupling strengths and timescales of the solvent modes form the
second factor. This impact of the dissipative environment is
significantly more difficult to analyze. Building on the recently
derived relations between coherences and population derivatives,
we present an analysis of the transport that allows us to account for
both the effects in a rigorous manner. We demonstrate the richness
hidden behind the transport even for a relatively simple system, a
4-site coarse-grained model of the Fenna−Matthews−Olson complex. The effect of the local dissipative media is highly nontrivial.
We show that while the impact on the total site population may be small, there are noticeable changes to the pathway taken by the
transport process. We also demonstrate how an analysis in a similar spirit can be done using the Förster approximation. The ability
to untangle the dynamics at a greater granularity opens up possibilities in terms of design of novel systems with an eye toward
quantum control.

1. INTRODUCTION
Simulating complex chemical reactions in the condensed phase
has been the holy grail of computational and theoretical
chemistry. This already difficult task becomes even more
arduous when the reaction involves the purely quantum
mechanism of tunneling. However, this is ubiquitous in various
processes like exciton transport in photosynthetic complexes,
charge (especially electron and proton) transfer, etc. Further-
more, many exciton and charge-transfer processes happen in
extended systems where there can be multiple pathways for the
quantum “particle” to follow. A thorough understanding of the
contribution of these various pathways is necessary to facilitate a
more clear picture of the dynamics.

The simulation of the basic dynamics of quantum particles in a
condensed phase is quite challenging in and of itself.
Approximations like Redfield and Förster,1 though often used,
are not universally applicable, especially in the nonperturbative
regime. For numerically exact simulations of dynamics of
extended systems, approaches based on tensor networks have
been gaining a lot of popularity. Most notable among them are
the density matrix renormalization group (DMRG)2−4 and its
time-dependent variant.5 The family of multiconfiguration time-
dependent Hartree (MCTDH)6,7 can also be thought of as
being based on tree tensor networks. However, these approaches
often fail to account for the effects of (a possible continuum of)

translational and vibrational degrees of freedom contributed by
the solvent.

Methods based on simulating the reduced density matrix
provide a lucrative alternative to the above-mentioned methods.
Of these, the quasi-adiabatic propagator path integral
(QuAPI)8,9 and hierarchical equations of motion
(HEOM)10−12 are the most widely used. The development of
small matrix decomposition13,14 of QuAPI has made it especially
viable for simulating large systems. Additionally, tensor
networks have also been shown to be exceptionally useful in
increasing the efficiency of path integral methods.15−18 These
tensor network-based ideas have very recently been successfully
extended to a multisite framework capable of simulating the
quantum dynamics of extended systems coupled with local
dissipative media.19−21

Studies of population dynamics conducted with these
methods, while very rich in information, are unable to provide
a clear and unambiguous insight into the mechanism of
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transport. Consider an extended system with a nontrivial
topology allowing for long-ranged couplings between sites, and
assume we are interested in the transport of an exciton. For a
given initial location of the exciton, one would traditionally focus
on the time-dependent population of the exciton on each of the
sites. We would have no further information on the route or
“pathway” that the exciton took to get to a particular site. Such
information, however, is crucial to optimization of materials for
guided quantum transport. An extremely naiv̈e approach to
analyzing the pathways would be to track the route of the
strongest couplings in the system Hamiltonian that leads from
the “source” to the “sink”. Such an approach would obviously
miss out on the effects of the dissipative media. A different
approach has been recently used to understand these pathways
under a Lindbladian model Hamiltonian by evaluating the
transport of the base system vis-a-̀vis a system with a particular
chromophore dropped.22 The idea is that dropping a
chromophore that is a part of the primary pathways would
lead to a large decrease of transport efficiency. Alternatively, Wu
et al.23 have used flux networks constructed on integrated flux
between sites and the flux balance method24 to analyze the
pathways in the Fenna−Matthews−Olson complex (FMO).

Recently, Dani and Makri25 have shown that the instanta-
neous rate of change of the site population is related to the off-
diagonal terms of the reduced density matrix (also called the
“coherences”) and rigorously derived the rate constants specific
to the various state-to-state channels. “Coherence maps” are
visual representations of the time evolution of the off-diagonal
terms of the reduced density matrix and have recently been
shown to capture important features of the structure of the
Hamiltonian.26 Building on these insights, we show how one can
efficiently leverage the dynamical information in the off-diagonal
terms to understand the effect of dissipative media in
modulating the direct transport between sites as a function of
time. While rates and kinetic models can often offer deep
insights,23,24,27,28 in many ultrafast chemical systems, the short-
time dynamics, often called the transients, may be very
important. Rate theory and steady-state analysis generally fail
for such processes and ones with more than one primary
timescale. In these cases, it becomes crucial to shift our attention
from rates to population transfer.

The paper is organized as follows. The method of analysis is
outlined in Section 2. Thereafter, we explore the excitation
dynamics in a coarse-grained four-site model of the Fenna−
Matthews−Olson complex (FMO) with a focus on how this
information can be used in a directed manner to gain detailed
insights into the same. In Appendix A, we also develop a similar
site-to-site transport analysis based on the incoherent Förster
theory. Unlike this approximate approach, we would like to
point out at the outset that the coherence-based analysis that is
the primary focus of this paper is more general and can be
applied to problems beyond exciton transport. Finally, some
concluding remarks and future outlook are presented in Section
4.

2. IMPORTANCE OF COHERENCES IN DIRECT
UNMEDIATED POPULATION TRANSPORT

Consider a system with N sites or states coupled with arbitrary
harmonic baths. These baths may or may not be site-local. The
Hamiltonian of such a problem is generally of the form

= +H H H0 SB (1)

where Ĥ0 is the Hamiltonian corresponding to the system and
ĤSB is the Hamiltonian corresponding to the system-bath
coupling. (It is assumed that the system is represented in a basis
that diagonalizes ĤSB.) Under Gaussian response, the harmonic
baths are often obtained from a simulation of the bath response
function.29,30 Usually, one simulates the time-dependent
population of each of the states. Here, we define the direct
“state-to-state” population transfer from state k to state j as the
population transfer between them without any intermediate
state, also denoted by Pj←k. The objective is to be able to
simulate Pj←k as a function of time. Given that a “pathway” or
“route” of transport is nothing but a sequence of these state-to-
state population transfers, it should be possible to assemble a
picture of the important pathways using them as the building
blocks.

If ρ̃(t) is the time-evolved reduced density matrix and Pj =
Tr(ρ̃(t) |j⟩|⟨j) is the population of the jth site, it is trivial to show
that the time derivative of this population can be expressed as25

= [ ]
P

t
t F

d

d
Tr ( )

j
j (2)

where

= [ | |]F i H j j,j 0 (3)

so long as the system−solvent coupling is diagonal in the system
space. This commutator, F̂j, is exactly the same flux operator that
is used for rate theory.31,32 Though generally, rate theory is
formulated in terms of the equilibrium correlation functions, it
has been shown that the rate for a two-state problem can be
obtained as a “plateau” value of the time-dependent non-
equilibrium flux, eqs 2 and 3, as well.33 However, here we are not
interested in a rate perspective. We rather want to understand
the full time dynamics with additional information about the
channel-dependent contributions. Following Dani and Makri,25

we expand eq 2 to get

= | | | | | | | |
P

t
i j t k k H j j H k k t j

d

d
( ) ( )j

k
0 0

(4)

For a real symmetric time-independent system Hamiltonian

= | | | |
P

t
j H k j t k

d

d
2

Im ( )j

k
0

(5)

Equations 4 and 5 can be interpreted in terms of the rates along
the different state-to-state channels.25 By comparing eqs 5 with
4, one can, for any k, interpret the term with Im ⟨k|ρ̃(t)|j⟩ as the
rate of flow from site k into j and the term with Im ⟨j|ρ̃(t)|k⟩ as
the rate of flow from site j to k. The time evolution of the
individual coherences, ⟨j|ρ̃(t)|k⟩, as captured through coherence
maps, also shows very interesting features reflecting the system
dynamics and equilibrium.26

Often the full population dynamics is a fruitful interrogative
tool for understanding the system. However, when it comes to
ideas of quantum design and understanding transport pathways
involved in complex processes such as excitation energy
transport (EET) or multicharge transport, it seems to be helpful
to think in terms of site-to-site population transfer. The
coherences allow us a crucial ability to express the direct and
unmediated transfer of population between different sites. One
can directly use eq 4 to partition the total population change at a
site into the contributions from each state-to-state channel. We
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define the time-dependent population flow from the kth site to
the jth site as

= | | | |

| | | |

P t
i

t j t k k H j

j H k k t j

( ) d ( ( )

( ) )

j k

t

0
0

0 (6)

For a real symmetric time-independent system Hamiltonian,
using eq 5, this reduces to

= | | | |P t j H k t j t k( )
2

d Im ( )j k

t

0
0 (7)

Notice that the state-to-state population flow between two sites
is proportional to the Hamiltonian matrix element between
them. This is what we would have naiv̈ely concluded. However,
the proportionality constant is related to the time integral of the
coherence. This captures the solvent effect on the system
dynamics. These state-to-state populations are independent of
how the simulation was done and therefore can be applied to any
level of simulation as desired. There are no further
approximations over and above the ones used for simulating
the time-dependent reduced density matrix of the system.
Additionally, eqs 6 and 7 uphold detailed balance in the sense
that Pj←k(t) = −Pk←j(t) and that Pj←j(t) =0 for all j, encoding the
fact that there cannot be any population transfer from a site to
itself.

Finally, the time-dependent population of the jth site can be
expressed as

= +P t P P t( ) (0) ( )j j
k j

j k
(8)

The ability to partition the time-dependent population on a site
into the components along various channels is important for
understanding the effects resulting from the nontrivial
interactions between specific changes in the dissipative media
and the system Hamiltonian. If the system is thought of as a
graph, with the sites being the vertices and the edges being the
various inter-site connections, then the time-integrated
coherences decompose the time evolution of the population
on a site (vertex) along all of the edges that are incident on it.
The only assumption in this analysis is that it requires the
environment to interact with the system through an operator,
which is diagonal in the system space. Even if the solvent is
anharmonic or atomistically described, mixed quantum-classical
methods like quantum-classical path integral34,35 can be used to
simulate this information.

3. RESULTS
To demonstrate the utility of this analysis of the state-to-state
population transfers leveraging the information of the
coherences, consider a coarse-grained system modeled on the
FMO complex. FMO is a naturally occurring light-harvesting
complex with eight bacteriochlorophyll monomeric sites. It is
ubiquitous as a model for excitonic transport and provides a very
rich set of dynamical features owing to the nonlinear inter-site
couplings. We would like to note that here, FMO is a convenient
example problem. The coherence-based state-to-state analysis
that is the subject of this paper is not limited to exciton transport.
It can help generate direct insight into the complex dynamics of
any quantum particle undergoing transport across multiple
“sites”. The most common examples of such transport processes
are exciton or charge-transfer systems. To enable a thorough
exploration of the impact of the vibrational modes on the

transfers through various state-to-state channels, we simplify the
system by coarse-graining it to include the four most relevant
sites. For FMO, it is known that if bacteriochlorophyll site 1 is
initially excited, the primary pathway is 1 → 2 → 3, and the
secondary pathway leads from 1 → 6 → 5 → 4 → 3. Thus, in our
coarse-grained model, we keep sites 1, 2, and 3 as is, reduce sites
4, 5, and 6 into a new renormalized 4th site, and omit sites 7 and
8 entirely. This is shown in Figure 1. Similar to the full FMO, we
expect the model to have a primary pathway of 1 → 2 → 3 and a
secondary pathway of 1 → 4 → 3.

The coarse-grained FMO model, along with its interactions
with the local vibrational baths, is described by the following
Hamiltonian

= +H H H0 SB (9)

= | | + | |
=

H k k h j k
k

k
j k

j k0
1

4

,
(10)

i

k
jjjjjj

y

{
zzzzzz= +

| |

= =
H

p

m
m x

c k k

m2
1
2k j

N
kj

kj
kj kj kj

kj

kj kj
SB

1

4

1

2
2

2

2
osc

(11)

where ωkj and ckj are the frequency and coupling of the jth
harmonic mode of the bath corresponding to the kth site. The
mass of the bath mode, mkj, is generally taken to be unity. The
electronic excitation energies are given by ϵk, and the inter-site
couplings are given by hj,k. The frequencies, ωkj, and couplings,
ckj, of the kth bath are characterized by the spectral density
defined as

=J
c

m
( )

2
( )k

j

kj

kj kj
kj

2

(12)

This can be calculated as the Fourier transform of the energy-gap
autocorrelation function simulated using molecular dynamics.

Figure 1. Fenna−Matthews−Olson complex with the bacteriochlor-
ophyll units colored by the coarse-grained units used. Blue: Coarse-
grained site 1. Orange: Coarse-grained site 2. Green: Coarse-grained
site 3. Red: Coarse-grained site 4. Gray: Ignored.
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The site-dependent spectral densities and Hamiltonian for FMO
have been recently obtained using the TD-LC-DFTB density
functional.36 We use these parameters as the starting point for
our exploration. The Hamiltonian corresponding to this coarse-
grained model is given in the Supporting Information. The
average and the site-dependent spectral densities are shown in
Figure 2 for reference. In our exploration of the FMO model, we
will change the spectral densities in various ways that shall be
described. However, the parameters for the system Hamiltonian
will always remain the same to ensure that the effects that we see
arise solely out of the vibrational baths.

Figure 3 shows the excitonic population corresponding to
each of the sites for the site-specific and average spectral

densities. (This information can, in principle, be calculated using
many methods. Here, the simulations have been conducted
using the tensor network path integral method17 based on
Feynman−Vernon influence functional. Details of the method
are provided in the Supporting Information.) We notice that
changing the average spectral density to the site-specific spectral
densities has minor effects on the dynamics of bacteriochlor-
ophyll sites 1 and 2 and negligible effects on the populations of
sites 3 and 4. A key drawback of this population picture is that it
washes away a lot of details. At this level, one cannot answer
questions such as how does the transfer from site 1 to site 2,

P2←1(t), change in switching between the two descriptions. Or
what happens to the various contributions to the site 3
population?

The analysis of the imaginary part of coherences allows us to
answer these questions. In Figure 4, we show the population

dynamics of specific sites along with the individual contribu-
tions. The first thing that one immediately observes is that the
primary flow of excitonic population happens along 1 → 2 → 3.
To see this, consider that the excitation starts on site 1. The
biggest transport happens from 1 to 2 in Figure 4a (red line).
Then looking at where the population goes from site 2, we see
that the maximum amount goes to 3 in Figure 4b (green line).
By a similar analysis, we find a secondary, slower pathway that
leads from site 1 to site 3 via site 4 (1 → 4 → 3). Additionally,
one sees a non-insignificant contribution from 1 → 2 → 4 → 3.
The direct transfer from site 1 to site 3 is the least important of
these. While the ability to analyze the primary pathways

Figure 2. Site-dependent and average spectral densities for the first four bacteriochlorophyll units in FMO obtained from Maity et al.36

Figure 3. Excitonic population on different sites as a function of time.
Solid line: average spectral density. Dashed line: different spectral
densities.

Figure 4. Transfer pathways of excitonic population corresponding to
each site. Solid line: average bath. Dashed line: different spectral
densities. Black: Total change of population of the site. Yellow: change
due to site 1 (P*←1(t)). Red: change due to site 2 (P*←2(t)). Green:
change due to site 3 (P*←3(t)). Blue: change due to site 4 (P*←4(t)).
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immediately is obvious from Figure 4, we would like to
emphasize the power of the method in terms of disqualifying
unimportant pathways as well. Notice that though site 1
transfers population into site 4, site 4 only transfers population
into site 3. Therefore, a path like 1 → 4 → 2 → 3 is not
important.

We notice that with the site-specific spectral densities, the
excitonic flow along 1 → 2 → 3 is decreased coupled with an
increased flow along the 1 → 4 → 3 pathway. As for the other

two pathways, the flow along 1 → 2 → 4 → 3 increases, and the
direct transfer 1 → 3 remains the same. These changes in the
excitonic pathways are evidenced by the fact that in going from
the average to the site-specific spectral densities, the direct
transfer from site 2 to site 3 (red curve in Figure 4c) shows a
decrease, and the transfer from 4 to 3 (blue curve in the same
figure) shows an increase. Furthermore, while there is an
increase in both the transfer from site 1 to site 4 (yellow curve in
Figure 4d) and site 2 to site 4 (red curve in the same figure), the

Figure 5. Total population of site 3 as a function of time on scanning the reorganization energies on site 2 and site 3, respectively.

Figure 6. Population transfer along 1 → 2 and 2 → 3 for components of the primary pathway when the site-specific reorganization energies on site 2
and site 3 are scanned.
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increase in 1 → 4 is much larger. An explanation for these
changes can be made by looking at P3←2(t) (red curve in Figure
4c). We notice that for the site-specific spectral densities, the
direct transfer from site 2 to 3 seems to be somewhat restricted,
causing a rerouting of the excitation through site 4. Despite all of
these subtle changes brought in by spatial inhomogeneity, the
ranking of the main pathways still remains unperturbed. Apart
from this rather broad overview of the pathways of excitation
dynamics, a state-to-state analysis can uncover a wide variety of
other features. For example, we can determine that the actual
direct transfer from site 1 to site 2, P2←1(t), shows two different
timescales. There is a fast transfer of population from site 1 to
site 2 up to around 0.5 ps, which is followed by a significantly
slower transfer of population. Thus, the red line in Figure 4a and
the yellow line in Figure 4b show a much slower gradient starting
around that time.

To explore the effect of the site dependence of the spectral
density, we systematically change the reorganization energies on
single sites using the average bath as a starting point. We scale
the reorganization energies on site 2 and site 3 with factors
ranging from 0.25 and 1.75 in steps of 0.25. Figure 5 shows the
change in the population dynamics of site 3 under such a scan.
Notice that in Figure 5b, on scanning the reorganization energy
on site 3, the population curve initially increases very quickly
when the scaling factor is increased from 0.25 to 0.5. It then
seems to stabilize and for scaling factors greater than 1 seems to
show a decreasing trend. This behavior is very reminiscent of the
inverted region in Marcus theory of electron transfer.37 The
trends seem to become different when we consider the scan of
the reorganization energy on site 2 (Figure 5a). In the regime
scanned, on increasing the reorganization energy on site 2, the
population on site 3 seems to grow slower. The analysis based on
coherence allows us to investigate these changes in a much
greater depth.

Let us consider the primary pathway, 1 → 2 → 3. Figure 6
demonstrates the changes in the population dynamics along this
pathway on scanning the reorganization energies on sites 2 and
3. (Figure 6a,b shows the change in dynamics for a scan on site 2
and Figure 6c,d shows the change in dynamics for a scan on site
3.) First notice that the curves in Figure 5b are very similar to
those in Figure 6d. Also, the direct transfer from site 1 to 2,
Figure 6c, shows very little change on scanning the
reorganization energy on site 3. This implies that the main
cause of change of the population dynamics of site 3 when its

reorganization energy is scanned is the change in the transfer
from site 2 to site 3. Things get slightly more complicated when
the reorganization energy on site 2 is scanned (Figure 6a,b).
Both the transfers from site 1 to 2 and site 2 to 3 change with the
reorganization energy, showing a non-insignificant slow-down of
the dynamics. Interestingly, only the fast timescale transfer from
site 1 to site 2 (Figure 6a) is affected by the increase of the
reorganization energy. The transport at later times seems to
remain relatively invariant.

Finally, before concluding this discussion, we turn our
attention to the 1 → 4 transport when the reorganization
energies on sites 2 and 3 are scanned. This is shown in Figure
7a,b, respectively. Notice that though the reorganization energy
is being changed on a site that is not even involved in this direct
transport, both the scans affect the 1 → 4 transfer. While the
pattern is unclear when the scan is on site 3 (Figure 7b), there is
a very clear monotonic increase of the population transfer on
scanning on site 2 (Figure 7a). (The data corresponding to the
other channels, though not explored here, have been reported
along with these plots in the Supporting Information for
completeness.)

4. CONCLUSIONS
Many exact and approximate methods exist that can simulate the
dynamics of complex systems coupled with solvents and
vibrational modes. However, it is a significantly more difficult
challenge to understand the exact routes that the transport
process takes. The naiv̈e approach of looking at the inter-site
couplings falls short because of its failure to account for the
nontrivial effects of the solvent modes. In this paper, we have
presented a novel technique for analyzing the dynamics that
yields the contribution of each state-to-state channel. Unlike
previous works, the current coherence-based approach is able to
generate a dynamical picture of the transport pathways.

There has been a recent realization of the importance of the
coherences or off-diagonal terms, especially in the steady state,
in understanding the dynamics.23,28 It has been shown that the
time derivative of the site populations can be written as a linear
combination of the imaginary part of the coherences.25 Based on
this relation of the time derivatives with the imaginary parts of
the coherences, we show that the change in the population of a
site can be trivially decomposed into the contributions coming
from different channels. Thus, one can, using the coherences,
study the effects of the solvent and temperature on the direct and

Figure 7. Population transfer along 1 → 4 for components of the primary pathway when the site-specific reorganization energies on site 2 and site 3 are
scanned.
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unmediated transport between any pair of sites as a function of
time. We have also derived a similar approach based on the
incoherent Förster rate theory. While the coherence-based
approach is totally general and can be used to analyze a variety of
dynamics, the approach based on Förster rate theory is limited to
cases where the latter is applicable, in particular to exciton
transfers.

Employing this coherence-based analysis, we can start to
untangle the dynamics of systems with complicated inter-site
couplings. We use a 4-site model based on the FMO as an
example, which enables a comparison of the Förster theory-
based approach. For this particular problem, we show that the
latter approach also works quite well even in estimating the
dynamical state-to-state transfers. As demonstrated, the insights
uncovered can often be very nontrivial. From a fundamental
perspective, just because the total population on a site has a
relatively regular pattern, it is not necessary that the regularity is
there in all of the individual contributions. Similarly, the total
population showing some strange feature does not imply the
existence of the weirdness in each of the contributory dynamics.
What is possibly equally important to a fundamental under-
standing is the fact that changing the vibrational profile on a
single site affects not only the pathways involving that site but
other pathways as well. This has important implications in trying
to design materials to engineer specific outcomes in complex
open quantum systems.

An analysis of the coherences reveals a wealth of information
that lay hidden in the dynamics of the reduced density matrix.
Extending the explorations in ref 26, it is now possible to
associate causes with the various changes that happen in the total
population dynamics. In the near future, we will utilize these
ideas in understanding other processes beyond exciton trans-
port, especially complex reactions with multiple pathways like
proton-coupled electron transfer and multi-proton transfers.
The fact that the various analyses of coherence done here and
earlier elsewhere23,25,26,28 are not dependent on any single
method of simulation of the time-evolved reduced density
matrix makes these ideas universally applicable. Finally, for cases
where approximate Förster theory is applicable, we have also
derived an approach to obtain similar dynamical state-to-state
transfer information. We believe that the combination of these
two complementary approaches, and the idea of dynamical state-
to-state transport, will be useful in the future for studying the
dynamics in a variety of complex systems.

■ APPENDIX A COMPARISON WITH INCOHERENT
FÖRSTER THEORY

Förster theory1 is a perturbative theory formulated to describe
resonant energy transfer between two electronic states. It works
especially well if (1) the electronic couplings between two sites
are smaller than the strength of the system-bath coupling
between the chromophoric units on the one hand and the
vibrational modes and protein scaffold on the other,and (2) the
chromophoric sites can be thought of as point dipoles.38 The
reorganization energies of the baths are 304.77, 442.45, 1004.79,
and 405.96 cm−1, which are all greater than the electronic
couplings listed in the system Hamiltonian given in the
Supporting Information. Consequently, this is a case where
the approximate Förster theory should be applicable.

The Förster results for the time evolution of the molecular
excitations are shown in Figure 8. Exact results reported in
Figure 3 are also reproduced as Figure 8b for convenience. The
site-based population dynamics is practically identical, showing

the power of the incoherent Förster in simulating the excitonic
dynamics in these situations. Now, Förster simulations typically
only give the excitonic population on the different sites. We can
however build a similar time-dependent site-to-site picture by
using the Förster rate matrix and the incoherent populations by
identifying that the time derivative of the site-to-site population
transfer is given as

=P t k P t k P t( ) ( ) ( )j i j i i i j j (13)

Consequently, we can obtain the population transfer by
integrating the right-hand side

=P t t k P t k P t( ) d ( ) ( )j i

t

j i i i j j
0 (14)

The integrated population flux used by Wu et al.23 is equivalent
to the long-time limit of eq 14. Using this, we can estimate the
site-to-site population transfer, and in Figure 9, we show a
comparison between the Förster results and the exact numerical
results. Just as the total site-based population was simulated very

Figure 8. Förster and exact simulations of excitonic population on
different sites as a function of time. Solid line: average spectral density.
Dashed line: different spectral densities.
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accurately by Förster theory, the site-to-site transfers are also
reproduced properly.
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