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ABSTRACT
Recent work has shown that it is possible to circumvent the calculation of the spectral density and directly generate the coeffi-
cients of the discretized influence functionals using data from classical trajectory simulations. However, the accuracy of this procedure
depends on the validity of the high temperature approximation. In this work, an alternative derivation based on the Kubo formalism
is provided. This enables the calculation of additional correction terms that increases the range of applicability of the procedure to
lower temperatures. Because it is based on the Kubo-transformed correlation function, this approach allows the direct use of correla-
tion functions obtained from methods such as ring-polymer molecular dynamics and centroid molecular dynamics in determining the
influence functional coefficients for subsequent system-solvent simulations. The accuracy of the original procedure and the corrected
procedure is investigated across a range of parameters. It is interesting that the correction term comes at zero additional cost. Further-
more, it is possible to improve upon the correction using zero-cost physical intuition and heuristics making the method even more
accurate.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0101396

I. INTRODUCTION

Simulation of quantum dynamics in the condensed phase is
a challenging problem. Classical mechanics can often be a very
approachable approach to such simulations. These classical calcula-
tions miss out on corrections coming from quantum dispersion and
zero-point energy effects. Much work has been done to incorporate
quantum effects in classical trajectories ranging from full semiclas-
sical dynamics1–3 to single classical trajectory-based approaches,
such as the Wigner approach,4,5 centroid molecular dynamics
(CMD),6,7 and ring-polymer molecular dynamics (RPMD).8 How-
ever, for problems where the quantum nature of the dynamics is
inevitable, these classical trajectory-based approaches are not use-
ful. Often in such cases, a system-solvent decomposition can be
performed limiting the quantum nature of the dynamics to a low-
dimensional subspace. Typically, reduced density matrix approaches
related to the hierarchical equations of motion (HEOM)9 and quasi-
adiabatic propagator path integral (QuAPI)10,11 are used for such
problems.

Recently, tensor network approaches have been used in con-
junction with both HEOM12–14 and QuAPI.15–17 Based on the tensor
network representation of path integral using the Feynman–Vernon

influence functional,18 one can develop a multi-site method that
is capable of simulating extended quantum systems.19 This new
multi-site tensor network path integral has been used to study the
dynamics and absorption spectra of the B850 ring20 and diffusive
quantum transport in XXZ spin-chains coupled with phonons.21

The presence of the solvent makes the time propagation of
the system non-Markovian. In the path integral framework, this
non-Markovian memory is expressed as two-point interactions
characterized by the separation between them. These interaction
coefficients are related to integrals of the bath response function
and have historically been expressed as integrals over the spectral
density. While this is convenient for model studies with analytical
spectral densities, it necessitates high quality molecular dynamics
(MD) simulations for estimating the spectral density when the sol-
vent is atomistically described. The presence of numerical noise in
these molecular dynamics simulations along with the requirement
to simulate up to long times to reach equilibrium complicate the
calculation of these spectral densities.

Allen et al.22 have proposed a technique to directly use the
energy gap autocorrelation function to estimate the influence func-
tional coefficients required for a path integral simulation and
avoid the computation of the spectral density. While this classical
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approximation (CA) method is extremely simple, its basic assump-
tions limit its applicability only to high temperatures. This stems
from the simultaneous identification of the classical correlation
function and its derivative with the real and imaginary parts of
the quantum correlation function, respectively. It is quite well-
understood that the quantum dispersion and zero-point effects
would affect the real part significantly in all but the highest tem-
peratures. The basic goal of this paper is to derive a similarly
computationally efficient method of obtaining the discretized influ-
ence functional coefficients from the bath response function but with
better accuracy at lower temperatures.

Before going further, it would be prudent to note that this dis-
cussion is based on the presumption that the potential energy surface
describing the dynamics is ab initio. Although ab initio molecular
dynamics (AIMD) is becoming increasingly approachable for large
systems using neural network fits of the forces and energies from
density functional theory,23,24 classical force-fields such as Chem-
istry at Harvard Molecular Mechanics (CHARMM)25 still remain
extremely popular. These classical force fields are generally designed
with the goal of including nuclear quantum effects at particular ther-
modynamic conditions. When the scheme is successful, the solvent
described by such classical force fields can approximately account
for nuclear quantum effects through classical mechanics. In such
cases, the simultaneous identification of the real and imaginary part
of the quantum correlation function with the classical correlation
function and its derivative, respectively, in CA is correct. The rest
of this paper assumes some sort of an ab initio description that is
not parameterized to account for the nuclear quantum effects of the
solvent.

In this paper, we propose an approach to deriving the dis-
cretized influence functional coefficients directly in terms of the
Kubo-transformed bath response function. The Kubo-transform of
the bath response function is given by

αKubo(t) =
1

βQ∫
β

0
dλTr[e−(β−λ)Ĥ sol f̂ e−λĤ sol f̂ (t)]. (1)

The Kubo correlation function is commonly simulated by methods
for simulating approximate quantum dynamics, such as centroid
molecular dynamics (CMD)6,7 and ring-polymer molecular dynam-
ics (RPMD).8 While there are many ways of expressing the quantum
correlation function, the Kubo formulation is widely known to be
the most similar to the classical correlation function. The explicit
formulation of the η-coefficient in terms of the Kubo correlation
function presented here creates a clear link between methods such as
CMD and RPMD and Feynman–Vernon influence functional-based
path integral.

This new derivation not only provides an alternative to the
CA approach22 but additionally gives a full series expansion. Conse-
quently, it becomes easy to improve the results by incorporating the
leading order corrections while retaining all the numerical advan-
tages of CA. We show that the most important first-order correction
term can be analytically simplified and written in terms of the
bath response function. The idea behind the incorporation of these
higher order terms is to correct for the discrepancy brought in by
assuming that the classical correlation function does an adequate
job of representing the real part of the quantum correlation func-
tion. These higher order terms are dependent on time-derivatives

of the bath response functions. Numerical derivatives are extremely
sensitive to noise present in the data. Therefore, we have expressed
the second-order correction in terms of a different correlation func-
tion. Every extra order of correction either requires a calculation
of completely different correlation functions or numerical deriva-
tives. This makes it impractical to go to very high orders. We have
further improved the first-order correction through physical argu-
ments and heuristics. The errors in CA and the corrected methods
are evaluated with respect to the η-coefficients and the dynamics.
The most attractive aspect of the first-order and the heuristic cor-
rections is that they can be done completely free of any additional
cost, retaining the dependence only on the energy–gap correlation
function.

The methods are derived in Sec. II, and a variety of numer-
ical tests and illustrations are shown in Sec. III. In addition, an
approach to rigorously obtain the next correction term is derived
in the Appendix. We end this paper in Sec. IV with some conclu-
sions and observations regarding these efforts to use the classical or
semiclassical correlation function directly in the generation of the
discretized influence functional coefficients.

II. METHOD
Consider a quantum system coupled with a dissipative solvent,

Ĥ = Ĥ0 + Ĥsol, (2)

where Ĥ0 is the Hamiltonian describing the quantum system and
Ĥsol describes the dissipative solvent. If the system is a two-level
system, Ĥ0 = ϵσ̂z − h̵Ωσ̂x, where σ̂x,y,z are the Pauli spin matrices.

The thermal dissipative solvent in many cases is atomistically
described. If the fully atomistic description needs to be considered,
one can use various mixed quantum–classical methods such as the
quantum–classical path integral method26,27 for simulation. How-
ever, generally, it is possible to map the essentially anharmonic
solvent onto a harmonic bath under the Gaussian response theory.
In such a case, the harmonic bath and its interactions with the system
are characterized by a spectral density,

J(ω) =
π
2∑j

c2
j

mjωj
δ(ω − ωj), (3)

where ωj and cj are the frequency and the coupling of the jth har-
monic oscillator to the system, respectively. Under the harmonic
bath, the Hamiltonian of the environment is given by

Ĥsol =∑
j

p̂ 2

2mj
+

1
2

mω2
j
⎛

⎝
x̂ j −

cj ŝ
mjω2

j

⎞

⎠

2

, (4)

where ŝ is the operator that couples the system with the solvent.
The spectral density, for this harmonic mapping, is obtained

from the solvent energy gap correlation function also called the bath
response function. It is related to the spectrum corresponding to the
bath response function as follows:

α(ω) =
2J(ω)

1 − exp(−h̵ωβ)
. (5)

Consequently, the bath response function is given by
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α(t) =
1
π∫

∞

0
dωJ(ω)(coth(

h̵ωβ
2
) cos(ωt) − i sin(ωt)). (6)

If the initial condition is specified as a direct product of the sys-
tem reduced density matrix and the bath thermal density, then the
system reduced density matrix after N time-steps of length Δt can be
represented as a path integral,

⟨s+N ∣ρ(NΔt)∣s−N⟩ =∑
s±0

∑
s±1

. . .∑
s±N−1

⟨s+N ∣Û∣s
+

N−1⟩⟨s
+

N−1∣Û∣s
+

N−2⟩

× . . . ⟨s+1 ∣Û∣s
+

0 ⟩⟨s
+

0 ∣ρ(0)∣s
−

0 ⟩⟨s
−

0 ∣Û
†
∣s−1 ⟩

× . . . ⟨s−N−1∣Û
†
∣s−N⟩F[{s

±

j }], (7)

where

F[{s±j }] = exp(−
1
h̵

N

∑
k=0
(s+k − s−k )

k

∑
k′=0
(ηkk′ s

+

k′ − η∗kk′ s
−

k′)), (8)

where Û is the short time system propagator and s±j is the
forward–backward state of the system at the jth time point. The
Feynman–Vernon influence function18 is denoted by F[{s±j }],
which is dependent upon the history of the path. This influence func-
tional can be described in terms of certain η-coefficients10,11 and can
be expressed as double integrals of α(t). The most general form is
given as

ηkk′ = ∫

(k+ 1
2 )Δt

(k− 1
2 )Δt

dt′∫
(k′+ 1

2 )Δt

(k′− 1
2 )Δt

dt′′ α(t′ − t′′). (9)

The spectral density and the correlation functions required here
are quantum mechanical. However, due to the large dimension-
ality of the solvent, one has to resort to classical trajectory-based
approximations to the quantum dynamics. The most popular such
approaches are CMD7 and RPMD.8 These approaches estimate the
Kubo transform of a given correlation function,

αKubo(t) =
1

βQ∫
β

0
dλTr[e−(β−λ)Ĥ sol f̂ e−λĤ sol f̂ (t)]. (10)

The main allure behind the Kubo-transformed correlation function
is that it has many similarities in structure with the classical cor-
relation function. Thus, departing from the classical approximation
(CA),22 we assume that if only a classical correlation function is
available, it is more prudent to use it as an approximation to the
Kubo-transformed correlation function. (The rest of this section
deals only with αKubo(t) and its derivatives.)

It is well-known that the Kubo-transformed correlation func-
tion has identical information to the standard correlation func-
tion. In particular, the standard spectrum is related to the Kubo
spectrum by

α(ω) =
h̵ ωβ

1 − exp(−h̵ ωβ)
αKubo(ω). (11)

Because the Kubo correlation function is even and consequently, the
Kubo spectrum is symmetric, one can relate the spectral density to
the Kubo spectrum,

J(ω) =
h̵ ωβ

2
αKubo(ω). (12)

It is possible to use the spectral density from the approxi-
mate quantum calculations in our estimation of the η-coefficients.

However, generating accurate, noise-free quantum correlation func-
tions for the Fourier transform involved in the calculation of
the spectral density can be challenging for large systems. It has
been shown that expressing the η-coefficients directly in terms
of the correlation function can make the approach numerically
robust.22

We can relate the bath response function to the Kubo correla-
tion function estimated by substituting Eq. (12) in Eq. (6), expanding
the coth term to a series and doing the integrals,

α(t) = αKubo(t) +
i h̵ β

2
α̇Kubo(t) +

1
3
(

i h̵ β
2
)

2

α̈Kubo(t)

−
1

45
(

i h̵ β
2
)

4 d4

dt4 αKubo(t) +O(h̵6
). (13)

It is interesting that the series Eq. (13) has only a single imagi-
nary term. All terms other than i̵hβ

2 α̇Kubo(t) are real. This is only
true for the Kubo-transformed correlation function. There has been
much work done on relating a classical correlation function to the
corresponding quantum correlation function.28–30 Such expansions
structurally look similar to Eq. (13). However, when the quantum
correlation function is expanded in terms of the classical correla-
tion function, there are higher order corrections to the imaginary
part as well.28 In addition, the harmonic approach to obtaining the
quantum correlation function from the classical correlation func-
tion has exactly the same form as here. However, in the harmonic
approach, it is an approximation, whereas here it is rigorously
true.

If one uses a classical correlation function to approximate
αKubo(t) and includes only up to the term linear in h in Eq. (13),
one would recover the results corresponding to CA. To summa-
rize, Allen et al.22 proposed that the real part of the η-coefficients
be obtained by doing a quadrature,

Re η(0)kk′ = ∫

(k+ 1
2 )Δt

(k− 1
2 )Δt

dt′∫
(k′+ 1

2 )Δt

(k′− 1
2 )Δt

dt′′ αKubo(t
′
− t′′), (14)

[the superscript (0) is there to indicate that this is the uncorrected
version] and for the imaginary part,

Im ηkk′ =
h̵ β
2 ∫

(k+ 1
2 )Δt

(k− 1
2 )Δt

dt′∫
(k′+ 1

2 )Δt

(k′− 1
2 )Δt

dt′′ α̇Kubo(t
′
− t′′), (15)

they evaluated the “inner” integral analytically, thereby transforming
the term into a single integral of the correlation function.

It is easy to see that the first order of correction to the real part
of the η-coefficients can be calculated analytically from Eq. (13). On
analytically simplifying the expressions for the first order correc-
tions, one finds that it is in form of different linear combinations
of the values of the Kubo correlation function αKubo(t),

Re ηkk′ = Re η(0)kk′ −
h̵2 β2

12 ∫
(k+ 1

2 )Δt

(k− 1
2 )Δt

dt′∫
(k′+ 1

2 )Δt

(k′− 1
2 )Δt

dt′′ α̈Kubo(t
′
− t′′)

(16)

= Re η(0)kk′ −
h̵2 β2

12
(αKubo((k − k′ + 1)Δt)

− 2αKubo((k − k′)Δt) + αKubo((k − k′ − 1)Δt)), (17)
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Re η00 = Re η(0)00 −
h̵2 β2

12
(αKubo(

Δt
2
) − αKubo(0)), (18)

Re ηkk = Re η(0)kk −
h̵2 β2

12
(αKubo(Δt) − αKubo(0)), (19)

Re ηk0 = Re η(0)k0 −
h̵2 β2

12
(αKubo((k +

1
2
)Δt) − αKubo(kΔt)

+ αKubo((k − 1)Δt) − αKubo((k −
1
2
)Δt)), (20)

Re ηN0 = Re η(0)N0 −
h̵2 β2

12
(αKubo(NΔt) − 2αKubo

× ((N −
1
2
)Δt) + αKubo((N − 1)Δt)). (21)

Equations (17)–(21) define the current method that we would
refer to as the first-order truncated Kubo (TK1) approximation to
the eta coefficients. Although the higher order terms in the series
require the calculation of the numerical derivatives, it might be pos-
sible to estimate them using different correlation functions. This
is derived explicitly for the second-order correction term in the
Appendix. This second-order truncated Kubo approximation would
be referred to as TK2.

The structure of several approaches to approximating the quan-
tum correlation function in terms of the classical28,30 is similar to
the equations listed above. The first correction term is indeed pro-
portional to the second derivative of the correlation function. The
difference is only in the exact prefactor used, all of which are of
the form

̵h2β2

c . (Apart from c = 12 derived here, c = 8 also appears
in certain approximations.) Therefore, the correction terms would
also look very similar.

While TK2 can be calculated if required, TK1 is by far the
simpler of the two algorithms. It needs no extra information other
than the bath response function. Let us, therefore, analyze the TK1
approximation and see if we can use heuristics to improve it. To
motivate the changes, consider the behavior of the η-coefficients as
estimated by TK1 on lowering the temperature. First, note that the
true quantum correlation function would become invariant to a tem-
perature below a certain value. This is because as the temperature is
lowered, the thermal density matrix would asymptotically become
the same as the density matrix corresponding to the ground state.
Consequently, the quantum correlation function would asymptoti-
cally tend to the ground state correlation function. However, this is
not the case with the truncated Kubo approximations.

The uncorrected real part, Re η(0), would show a behavior iden-
tical to the Kubo correlation function. To understand the depen-
dence on β, consider the Kubo-transformed position autocorrelation
function of a harmonic oscillator,

Cxx
Kubo(t) =

1
βmω2 cos(ωt). (22)

Clearly, the correlation function goes to zero as β−1. Consequently,
Re η(0) would also go to zero as β−1. The correction term has a
prefactor β2 and, hence, overall would increase linearly with β.
This means that the corrected Re η terms would overall increase
as β. [This problem arises because we are truncating the infinite
series in Eq. (13) after the quadratic term in h. In fact, the second-
order term incorporated in TK2 is a worse offender. It would
grow as β3 as β→∞. We will demonstrate in Sec. III that though
TK2 increases the range of temperature where we can get good η-
coefficients, its errors increase extremely fast once out of this “good
region.”] The imaginary part is independent of β because of its
prefactor.

While to correct this issue, we would need to consider the infi-
nite series, here, we give a poor man’s ad hoc approximate way of
treating the symptom. The uncorrected real part Re η(0) is closely
related to the classical correlation function, so we do not change it.
Now, turning to the first order correction term, the current coef-

ficient is − 1
3(
̵hβ
2 )

2
. To get rough temperature independence at very

low temperatures, we need to have the prefactor grow linearly with β
as that would compensate the β−1 scaling of the correlation function.
However, this new term has to be equal to the current coefficient and
grow as β2 for β→ 0. The function x tanh(x) has this property of
behaving like x2 for small values of x and as x for large values of x.
Therefore, we utilize this intuition to come up with two related but
slightly different schemes for regularization (the difference being in
how the prefactor is split up):

1. Use − 1
3(
̵h2β
2Eh
) tanh( Ehβ

2 ) as the prefactor. This is called the
tanh1 approximation. This particular grouping of terms can
be motivated if x = β

2 is seen as the main variable. Although β
is the term that diverges, it is always seen to appear in the form
of
̵hβ
2 .

2. Use − 1
3(
̵h2β
4Eh
) tanh(Ehβ) as the prefactor. This is called the

tanh2 approximation. Here, x = β is considered to be the
variable. This is extremely natural considering that β is the
variable that diverges and we are regularizing for.

(The Hartree energy terms are incorporated to make the argument
of the hyperbolic tangent function dimensionless. All the simula-
tions here are done in atomic units and consequently h = 1 and
Eh = 1.) The logic behind differentiating between these two differ-
ent techniques for taking care of the low temperature behavior is
that in the first case, β

2 is taken as a unit because it came from
ωβ
2 in the reciprocal space. In the second case, we do not keep the

entire numerical multiplier outside the hyperbolic tangent. These are
both correct at high temperatures but would have different ranges
of validity at low temperatures. Furthermore, though not done
here, the same idea can quite simply be extended to correct TK2
as well.

III. RESULTS
Consider the family of sub-Ohmic, super-Ohmic, and Ohmic

spectral densities with exponential cutoffs, given generally as

J(ω) =
π
2

h̵ξ
ωs

ωs−1
c

exp(−
ω
ωc
). (23)
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Because we have the spectral density, this model gives us a good
testing ground for exploring the accuracy of the various approx-
imate approaches to calculating the η-coefficients under a variety
of situations. Here, we are using the classical correlation function
as an approximation to the Kubo-transformed correlation function.
The classical correlation function can be obtained analytically as the
following integral:

αKubo(t) =
1
π∫

∞

0
dω

2
h̵ωβ

J(ω) cos(ωt) (24)

=
ξ
β

cos(s tan−1
(ωct))

√
(1 + ω2

c t2)s
Γ(s)ωc. (25)

For the Ohmic bath (s = 1), the classical correlation function,
Eq. (25), reduces to the well-known Lorentzian form,

αKubo(t) =
ξωc

β(1 + ω2
c t2)

. (26)

As a first comparison, let us consider high temperature para-
meters where the CA method would work the best. Following the
original work,22 we use an Ohmic bath with hωcβ = 0.15, ξ = 1, and
Δt = 1.25hβ. We compare some representative values of Re ηkk′ . The
imaginary values are not reported because they are the same for all

three methods. Therefore, the errors would be identical. The com-
parison is given in Table I. While CA performs quite well, the results
obtained by the truncated Kubo and the tanh methods are practi-
cally exact. There are no differences in the five places of decimal
reported in the table. The TK2 approach of course eliminates all
error, reducing the relative error to around 10−5%, while the other
methods have a larger but still completely negligible error of around
10−3%.

Keeping all the other parameters the same, let us change the
Ohmic bath to a super-Ohmic bath with s = 2. The errors are
shown in Table II. Unlike the Ohmic case, the errors in Re ηkk′

when using CA are quite significantly larger. The family of baths
given by Eq. (23) reaches a maximum at ω = sωc. Therefore, for
a super-Ohmic spectral density, the maximum occurs at a higher
frequency, which is at a colder equivalent temperature making CA
worse. The errors of the truncated Kubo (TK) and the tanh methods
also grow, though they continue to remain less than a hundredth
of a percent, and possibly negligible from the standpoint of a
dynamics simulation. Unsurprisingly, TK2 performs the best here
as well.

It is interesting to study the growth of the error in each of
these methods with increasing inverse temperature. Comparisons
for the diagonal Re ηkk terms and the terms connecting neighbor-
ing points Re ηk,(k−1) are shown in Fig. 1. The range of temperature

TABLE I. Comparison of the methods for s = 1, hωcβ = 0.15, ξ = 1, and Δt = 1.25 h̵β. Parameters are taken from Ref. 22. Only the magnitudes of the relative percentage errors
are reported. For this parameter, there is practically no difference between the truncated Kubo and the tanh approaches, and both are practically exact. Where the differences
are slightly more prominent (e.g., the first three rows), the tanh correction seems to improve the results.

From J(ω) CA CA, Δ (%) TK1 TK1, Δ (%) TK2 TK2, Δ (%) tanh tanh Δ (%) tanh2 tanh2 Δ (%)

Re η00 0.029 32 0.029 21 0.369 28 0.029 32 0.001 62 0.029 32 0.000 03 0.029 32 0.000 93 0.029 32 0.001 13
Re η10 0.114 74 0.114 36 0.332 02 0.114 74 0.001 19 0.114 74 0.000 01 0.114 74 0.000 57 0.114 74 0.001 28
Re η11 0.116 75 0.116 33 0.361 54 0.116 75 0.001 53 0.116 75 0.000 02 0.116 75 0.000 85 0.116 75 0.001 17
Re η20 0.105 65 0.105 43 0.207 12 0.105 65 0.000 03 0.105 65 0.000 01 0.105 65 0.000 36 0.105 65 0.001 51
Re η21 0.225 66 0.224 97 0.305 38 0.225 66 0.000 92 0.225 66 0.000 01 0.225 66 0.000 35 0.225 66 0.001 36
Re η30 0.092 46 0.092 41 0.052 57 0.092 46 0.000 79 0.092 46 0.000 01 0.092 46 0.000 89 0.092 46 0.001 18
Re η31 0.205 00 0.204 65 0.169 38 0.205 00 0.000 21 0.205 00 0.000 01 0.205 00 0.000 53 0.205 00 0.001 47
Re η20,1 0.017 12 0.017 14 0.074 52 0.017 12 0.000 03 0.017 12 0.000 00 0.017 12 0.000 17 0.017 12 0.000 59
Re η30,1 0.007 67 0.007 67 0.035 31 0.007 67 0.000 01 0.007 67 0.000 00 0.007 67 0.000 07 0.007 67 0.000 27

TABLE II. Comparison of the methods for a super-Ohmic bath with s = 2. The rest of the parameters are identical to Table I. Even in the worst case scenario, the corrected
methods (TK and the tanh correction) are two orders of magnitude better.

From J(ω) CA CA, Δ (%) TK1 TK1, Δ (%) TK2 TK2, Δ (%) tanh tanh Δ (%) tanh2 tanh2 Δ (%)

Re η00 0.029 44 0.029 12 1.093 47 0.029 45 0.007 96 0.029 44 0.000 17 0.029 45 0.005 90 0.029 44 0.000 23
Re η10 0.110 29 0.109 26 0.940 97 0.110 30 0.005 30 0.110 29 0.000 08 0.110 30 0.003 53 0.110 29 0.001 73
Re η11 0.116 23 0.114 99 1.061 96 0.116 24 0.007 38 0.116 23 0.000 15 0.116 23 0.005 38 0.116 23 0.000 57
Re η20 0.085 15 0.084 82 0.391 50 0.085 15 0.002 19 0.085 15 0.000 12 0.085 15 0.002 92 0.085 15 0.005 08
Re η21 0.209 69 0.207 94 0.831 96 0.209 70 0.003 63 0.209 69 0.000 03 0.209 69 0.002 07 0.209 68 0.002 58
Re η30 0.053 68 0.053 92 0.449 52 0.053 68 0.008 14 0.053 68 0.000 13 0.053 68 0.007 29 0.053 68 0.004 74
Re η31 0.154 54 0.154 20 0.216 49 0.154 53 0.003 76 0.154 54 0.000 13 0.154 53 0.004 16 0.154 53 0.005 34
Re η20,1 −0.014 62 −0.014 62 0.044 07 −0.014 62 0.000 00 −0.014 62 0.000 00 −0.014 62 0.000 08 −0.014 62 0.000 32
Re η30,1 −0.007 17 −0.007 17 0.029 48 −0.007 17 0.000 00 −0.007 17 0.000 00 −0.007 17 0.000 06 −0.007 17 0.000 22
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FIG. 1. Percentage error in various discretized influence functional coefficients for
each of the methods. Solid lines: Ohmic spectral density. Dashed lines: super-
Ohmic spectral density (s = 2). The plot goes to very cold temperatures as an
illustration of the principle. The errors make the methods useless much earlier.
(a) Percentage error in the real part of the diagonal η-coefficients. (b) Percentage
error in the real part of the “nearest neighbor interactions,” ηk,k−1.

illustrated in the figure is of course far beyond what any of the three
methods can handle. This is just a demonstration of how the errors
grow and not a statement about the usability of any of the meth-
ods. We can clearly see that both of the corrected methods perform
significantly better than the original CA, increasing the region of
applicability substantially. Using a 10% relative error as a threshold
of applicability, we note that CA becomes inaccurate at hωcβ = 1.
This is in comparison to the corrected methods that extend the
accuracy at least to hωcβ = 2. Also, it is extremely gratifying that
our tanh correction hacks perform exceptionally well and, consis-
tently, better than the base truncated Kubo method. In fact, because
of the discrepancy in the scaling of both TK1 and TK2 with β, we
find that though they do increase the range of applicability, beyond

that the error increases extremely fast. The fact that TK2 scales as
β3 while TK1 scales as β for β→∞ gets reflected in the fact that
TK1 becomes more accurate beyond around hωcβ ≈ 1.75. Now, it is
debatable whether any of the TK methods should be used beyond
that inverse temperature any way.

While it is illuminating to explore the errors in certain η-
coefficients, it is at the end of the day not all that useful. The
main problem is that it is difficult to extrapolate errors in the η-
coefficients to the error in the dynamical observables one may be
interested in. The discrepancies in certain η-coefficients may not
reflect as much and others may reflect more because of the way
different path amplitudes interact. The only real way of judging
this is by simulating the dynamics of a two-level system coupled
to the bath by using different methods for calculating the influ-
ence functional coefficients. The simulations of dynamics that follow
have been done using the iterative quasi-adiabatic propagator path
integral (QuAPI)10 method.

For the examples with dynamics, we will consider a more dif-
ficult case for these high temperature methods. The system is sym-
metric and defined by Ĥ0 = −h̵Ωσ̂x. Consider an Ohmic bath with
ξ = 1.5, ωc = 2.5Ω. The faster bath means that the effective tem-
perature would be lower. We start with a high temperature of
hωcβ = 0.25. (The simulations were converged at a time-step of
ΩΔt = 0.125 and a non-Markovian memory length of LΩΔt = 1.25.)
This is the regime where all the methods should be equivalently
good. The dynamics of σ̂z and σ̂x are shown in Fig. 2. While
the dynamics of σ̂z is identical in all the methods, we can, even
at this high temperature, visibly see the error in the CA simula-
tion of σ̂x(t). Both the truncated Kubo and the tanh corrections
agree exactly with the result from the analytic η-coefficients.
Therefore, this error cannot be a result of any error in Im ηkk′

because that is common to all three methods. Lowering the tem-
perature to hωcβ = 2, in Fig. 3, one finds that the CA method
has fallen apart. Both TK and the tanh corrections continue to
give acceptable results for σ̂z(t) but the TK1 and TK2 results
for σ̂x(t) do not match the analytical results. While the tanh1
approach seems to be quite close to the TK1 method, tanh2 con-
tinues to give extremely good agreement with the fully analytical
result.

In fact, even at hωcβ = 4, the tanh2 correction gives quite
acceptable results. This is shown in Fig. 4. At this very low tempera-
ture, we see the effects of the extreme sharp rise of errors in the TK2
method. We had mentioned that though TK2 increases the range
of applicability of the method, at low temperatures, the scaling of
TK2 (β3

) is very different from the theoretical limits, where the cor-
relation function should be independent of β. Here, we see such a
very low temperature, where the TK2 approach is in fact even worse
than CA.

Thus, we see that all the methods discussed here significantly
increase the range of applicability of the correlation function-based
approach to calculating the discretized influence functional coef-
ficients. Through rigorous derivations of TK1 and TK2, we have
increased the range of temperatures by at least two-fold. Although
the two tanh corrections have slightly different prefactors, they both
perform quite well with the tanh2 correction being the best. It is
pleasantly surprising that with tanh2, we have attained an almost
fourfold increase in the temperature range over which we can get
accurate dynamics.
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FIG. 2. Dynamics of various operators using different methods of generating the η-coefficients at a temperature of hωcβ = 0.25. (a) Dynamics of the σz(t). (b) Dynamics of
the σx(t).

FIG. 3. Dynamics of various operators using different methods of generating the η-coefficients at a temperature of hωcβ = 2. (a) Dynamics of the σz(t). (b) Dynamics of
the σx(t).

FIG. 4. Dynamics of various operators using different methods of generating the η-coefficients at a temperature of hωcβ = 4. (a) Dynamics of the σz(t). (b) Dynamics of
the σx(t).
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IV. CONCLUSION

We have developed a systematic way of expressing the η-
coefficients in terms of the Kubo-transformed bath response func-
tion. This makes it possible to use the results from methods such
as RPMD and CMD to characterize the mapping of an ab initio
atomistic solvent onto a bath of harmonic oscillators. The Kubo-
transformed correlation function, though identical in information
content to the standard quantum correlation function, is more clas-
sical in the symmetries that it has. Therefore, if a classical correlation
function is used as an approximation to the Kubo-transformed cor-
relation function and this expression is truncated at the first order
in h, it reduces to the classical approximation.22 While the classi-
cal approximation was an ad hoc approach, the relationship derived
over here can be used to rigorously converge the values of the
η-coefficients.

In addition to the general series, we have presented a host of
useful and cheap corrections to the classical approximation, thereby
increasing the temperature range over which one can directly com-
pute the discretized influence functional coefficients from corre-
lation functions. We have shown how the first major correction
to the classical approximation scheme can be analytically inte-
grated leading to a very simple change to the exact expressions.
This change can be obtained for no extra computational cost over
the integrals required to get the classical approximation. This first
change is called the first-order truncated Kubo expression. Although
further terms can, in principle, be incorporated, they require the
calculation of numerical derivatives or separate costly correlation
functions. If the original data are noisy, such computations are
often numerically unstable. Thus, it is tempting to stop at this first
order. Interestingly, for the case of the second-order correction, we
have derived a relationship of this term with a different correlation
function that can also be estimated quite efficiently by molecular
dynamics.

Because TK2 requires the calculation of an extra correlation
function, it is not always very lucrative. It is interesting to think
about improving TK1 with some heuristics. We have analyzed the
behavior of TK1 and shown that the real part scales linearly with
the inverse temperature, β. This is a problem because, at very low
temperatures, the correlation function should asymptotically tend to
the ground state correlation function. The cause was seen to be the
truncation of the infinite series. However, we have proposed a “poor-
man’s” approximation that involves transforming the coefficient of
the correction term to respect the proper limits. This constitutes
the motivation behind the two tanh approximations that have been
derived.

We have numerically assessed the performance of various
approximations introduced here to the classical approximation
and the analytical η-coefficients obtained using the expressions in
Ref. 10. (These numerical explorations have been done on a har-
monic bath, where the classical and Kubo correlation functions
are the same. For calculations on anharmonic solvents, ideally, an
approximate Kubo correlation function like the one from RPMD
or CMD should be used. In the absence of such an approxima-
tion, the classical correlation function can also be used because of
the similarities that the Kubo function shares with it.) We showed
that the exact values of the η-coefficients calculated by the TK and
the tanh approaches, even at high temperatures, are significantly

closer to the analytical results compared to the CA method. The
newly introduced corrections yield more accurate η-coefficients
through the entire applicable range of temperature. Despite this
overall increase in accuracy, it is noted that TK2 breaks down
quite pathologically. This has been understood from the perspec-
tive of scaling with the inverse temperature, β, which can only be
truly solved by considering the entire infinite series or, equivalently,
working in the frequency domain. While the true bath response
function becomes independent of β at very low temperatures, the
TK approximations do not. In fact, the TK2 approach grows as β3.
This is what leads to the pathological breakdown. Because the vari-
ous tanh approximations were built to fix this problem heuristically,
it is very encouraging that they perform significantly better than TK
approaches at low temperatures.

The values of these discretized influence functional coeffi-
cients, while extremely crucial, interact with the path amplitude
and the path sum in non-trivial ways making an extrapolation of
errors in coefficients to errors in dynamics impossible. We sim-
ulated the dynamics of a two-level system coupled to an Ohmic
bath at different temperatures with coefficients being derived by
each of the four approximate correlation function-based approaches.
The corrections introduced here increase the temperature range of
applicability of the correlation function-based approach by almost
four times in the best case. While the numerical results shown here
pertain to model spectral densities, real biological or chemical sys-
tems cannot be described only using the unstructured low frequency
modes. They have a mixture of a broad low frequency spectrum and
sharp features, mostly at higher frequencies, arising from more rigid
molecular vibrations. The corrections for low temperatures would be
even more important there. The rigid vibration regions are typically
colder than the unstructured ro-translational region of the spec-
tral density. Of course, if the simulation is done at a cold enough
temperature and all the higher order terms are necessary, it would
possibly be the simplest to calculate the spectral density directly
because of problems with the numerical derivatives and the scaling
with β.

The incorporation of Kubo correlation functions in path
integral-based approaches to system-solvent quantum dynamics
seems a very lucrative way of including anharmonic nuclear quan-
tum effects in the solvent in a simple way. Here, we have just
scratched the surface of this deep relationship. Future work would
look into further connections and possibilities.
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APPENDIX: RELATION BETWEEN THE
SECOND-ORDER CORRECTION AND CLASSICAL
CORRELATION FUNCTION

In the body of the text, we have focused on the first-order
correction to CA, primarily because that is the most important
term and can be evaluated at zero additional cost. While the
higher order corrections can be generally obtained using appro-
priate numerical derivatives, it is possible to obtain the second-
order correction quite efficiently using a different set of correlation
functions.

Consider the second-order correction term to the bath response
function, Eq. (13), given as −

̵h4β4

720
d4

dt4 αKubo(t). The corresponding
correction to the discretized influence functional coefficients would
be given as a double integral of the same,

εkk′ = −
h̵4β4

720 ∫
(k+ 1

2 )Δt

(k− 1
2 )Δt

dt′∫
(k′+ 1

2 )Δt

(k′− 1
2 )Δt

dt′′ α(iv)Kubo(t
′
− t′′). (A1)

By analytically doing the integrals, we can express the correction as

εkk′ = −
h̵4β4

720
(α̈Kubo((k − k′ + 1)Δt) − 2α̈Kubo((k − k′)Δt)

+ α̈Kubo((k − k′ − 1)Δt)). (A2)

Therefore, the second-order correction term to CA requires second-
order derivatives of the correlation function.

For simplicity, let us assume that the classical correla-
tion function is used instead of the Kubo-transformed cor-
relation function. Therefore, we replace αKubo with αCl. Since
RPMD and CMD both are classical trajectory-based methods for
approximating the correlation function, a similar derivation can
also be done for the relevant expressions corresponding to the
two approximately quantum methods. The bath response func-
tion in its quantum form and its classical approximation are
given as

α(t)∝ ⟨f̂ (t)f̂ (0)⟩, (A3)

αCl(t)∝∬ dq0dp0e−βH (q0 ,p0) f (q0) f (qt). (A4)

The first derivative of αCl(t) can be expressed as

α̇Cl(t)∝∬ dq0dp0e−βH (q0 ,p0) f (q0)(
⃗f ′(qt) ⋅

pt
m
), (A5)

where f⃗ ′ is the gradient of the function f . The second temporal
derivative can be expressed by the chain-rule,

α̈Cl(t)∝∬ dq0dp0e−βH (q0 ,p0) f (q0)

× (
pT

t
m
⋅ f ′′(qt) ⋅

pt
m
−
⃗f ′(qt) ⋅

F(qt)

m
). (A6)

The second-order derivative of f with respect to the position is
denoted by f ′′(qt). Generally, storing such second-order deriva-
tives is challenging, but, here, one can calculate them on-the-fly and
directly calculate the dot products. The force on the particle is given
by F.

Thus, it is possible to express the second-order time deriva-
tive of the autocorrelation function in terms of cross-correlation
functions, Eq. (A6). Consequently, if required, one can evaluate
the correction term, Eq. (A2), in terms of this cross-correlation
function.
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