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ABSTRACT
Tensor network decompositions of path integrals for simulating open quantum systems have recently been proven to be useful. However,
these methods scale exponentially with the system size. This makes it challenging to simulate the non-equilibrium dynamics of extended
quantum systems coupled with local dissipative environments. In this work, we extend the tensor network path integral (TNPI) framework
to efficiently simulate such extended systems. The Feynman–Vernon influence functional is a popular approach used to account for the effect
of environments on the dynamics of the system. In order to facilitate the incorporation of the influence functional into a multisite framework
(MS-TNPI), we combine a matrix product state (MPS) decomposition of the reduced density tensor of the system along the sites with a
corresponding tensor network representation of the time axis to construct an efficient 2D tensor network. The 2D MS-TNPI network, when
contracted, yields the time-dependent reduced density tensor of the extended system as an MPS. The algorithm presented is independent of
the system Hamiltonian. We outline an iteration scheme to take the simulation beyond the non-Markovian memory introduced by solvents.
Applications to spin chains coupled to local harmonic baths are presented; we consider the Ising, XXZ, and Heisenberg models, demonstrating
that the presence of local environments can often dissipate the entanglement between the sites. We discuss three factors causing the system
to transition from a coherent oscillatory dynamics to a fully incoherent dynamics. The MS-TNPI method is useful for studying a variety of
extended quantum systems coupled with solvents.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0073234

I. INTRODUCTION
Quantum effects in dynamics are very important for studying

charge or exciton energy transfer in long chains and in understand-
ing decoherence in systems of qubits. To curtail the exponential
growth of computational complexity, a system–solvent description
is often used. While in many cases, it is, indeed, possible to limit
the quantum description to only a small subspace of degrees of
freedom, for extended systems, however, this quantum subspace
or “system” can be quite large. Thus, the effectiveness of a typi-
cal system–solvent decomposition might be compromised. Methods
such as density matrix renormalization group1–4 (DMRG) and its
time-dependent variant5–7 (tDMRG) are very useful in simulating
these large systems by decomposing the wave function along the
“system” axis using sequential singular value decomposition (SVD).

Multiconfiguration time-dependent Hartree (MCTDH) and its
multi-level version (ML-MCTDH) constitute another family of ten-
sor network-based algorithms that have also been commonly used
to simulate non-equilibrium dynamics. However, when vibrational
or phononic modes are present, the wave function-based nature of
these algorithms poses significant computational challenges.

Propagating the reduced density matrix is a lucrative option
for simulating open quantum systems. Path integrals based on the
Feynman–Vernon influence functional8 and the hierarchical equa-
tions of motion (HEOM)9 are rigorous methods for incorporating
the interactions between systems and solvents without having to
simulate the environmental degrees of freedom explicitly. While
HEOM is, in principle, exact for systems interacting with arbi-
trary harmonic baths, practically, it has been mostly restricted to
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simulating the case of baths described by Drude spectral densities.
Attempts have been made to develop efficient HEOM-based algo-
rithms that are applicable to general spectral densities.9–16 For cases
of fermionic baths, it is also possible to simulate the influence func-
tional in an exact manner.17,18 However, when the solvent is neither
harmonic nor fermionic but is atomistically defined, the influence
functional does not have a closed-form expression. Classical tra-
jectories are often used for estimating the influence functional for
such problems.19–23 The quasi-adiabatic propagator path integral
(QuAPI)24,25 and related methods26–28 are useful when simulating
systems bilinearly coupled to harmonic baths. Recently, tensor net-
works have also been shown to be useful in making calculations with
influence functionals more efficient.29–34

Thermal dynamics of extended systems coupled to a dissipa-
tive bath poses unique challenges to simulations. Even though there
have been attempts to incorporate these baths in terms of basis
sets,35 as mentioned before, wave function-based methods such as
DMRG or tDMRG are typically not well-suited for these problems.
The computational complexity tends to grow because of the entan-
glement between the system states and the bath modes. Recently,
the modular path integral (MPI) approach has been developed36–40

and used to study41,42 extended systems with short-ranged interac-
tions. Although powerful, MPI suffers from an intrinsic inability to
simulate the full density operator corresponding to the extended sys-
tem and a difficulty in dealing with entangled initial states. This
is because MPI treats the system sites sequentially. Furthermore,
Lerose, Sonner, and Abanin43 developed a method based on ten-
sor network decompositions for simulating influence functionals for
cases where the system and the environment are made of indis-
tinguishable particles. In particular, they applied their method to
calculate the reduced density matrix for a specific site in a spin chain.

Tensor network path integral (TNPI)33 offers an approach to
influence functional-based path integral simulations that can, quite
naturally, be extended to handle problems involving extended sys-
tems interacting with localized solvents. TNPI typically involves a
matrix product (MP) representation of the “augmented propagator,”
which involves both the impact of the bath encoded by the influence
functional and the system forward–backward propagator. While
TNPI offers substantial gains in terms of compression of the path
integral, it still does not handle extended systems well. It is natural
to wonder if the entire time-evolving extended system can be repre-
sented in a compact form. Here, we extend this TNPI representation
to account for multiple system sites (or particles), leading to a multi-
site version (MS-TNPI). The resulting two-dimensional tensor net-
work can be efficiently contracted and used to simulate the reduced
dynamics (in terms of an MP representation) of the extended sys-
tem. From a different perspective, MS-TNPI can be thought of as an
extension of tDMRG that incorporates Feynman–Vernon influence
functionals to account for interactions of sites with local solvents.
Thus, it would be expected that this method would be able to
leverage the efficiency of the family of tensor network methods in
adequately representing the system.

As we will show, the MS-TNPI framework is independent of
the structure of the system Hamiltonian. All it requires is a matrix
product operator (MPO) representation of the propagator and a
matrix product state (MPS) representation of the system’s initial
density matrix. Thus, long-ranged interactions can be accounted for
without any change to the fundamental structure of the framework.

The time-evolved reduced density tensor corresponding to the entire
extended system is directly evaluated in the form of an MPS. The
method is implemented using the open-source ITensor library.44 In
Sec. II, we develop the structure of MS-TNPI. The method is illus-
trated with some examples in Sec. III. We demonstrate the ability
of the method to compress the representation of large quantum sys-
tems. Additionally, we explore various models of spin chains and
study the causes of dissipation. Finally, we end this paper with some
concluding remarks and future prospects in Sec. IV.

II. METHODOLOGY
Consider a system consisting of P particles or sites each with its

local vibrational degrees of freedom,

Ĥ = Ĥ0 +
P

∑
i=1

V̂ i, (1)

where Ĥ0 is the system Hamiltonian and V̂ i is the Hamiltonian
encoding the system–vibration interactions localized on the ith site.

The system–vibration interactions generally have anharmonic
terms, but under Gaussian response theory, the effect of the anhar-
monic vibrations can be accounted for by an equivalent harmonic
bath on the ith site,

V̂ i =
Nosc

∑
l=1

p2
i,l

2mi,l
+

1
2

mi,lω
2
i,l(xi,l −

ci,l ŝi

mi,lω2
i,l
)

2

, (2)

where ωi,l and ci,l are the frequency and coupling of the lth mode
of the ith site, respectively. Additionally, ŝi is the system operator,
associated with the ith site, that couples the site with its local vibra-
tions. The site–vibration interaction is characterized by a spectral
density,45,46

J(ω) =
π
2∑l

c2
l

mlωl
δ(ω − ωl). (3)

When the vibrations are defined by atomistic Hamiltonians, it is
possible to obtain the spectral density as a Fourier transform of the
energy-gap autocorrelation function simulated using classical trajec-
tories. In the case of interactions with phonons, typically the modes
can be exactly described by harmonic oscillators, even without
invoking Gaussian response theory.

The reduced dynamics of a system coupled to a harmonic bath
is given by

ρ̃(S±N , NΔt) = Trbath⟨S
+
N ∣ρ(NΔt)∣S−N⟩

=∑
S±0

ρ̃(S±0 , 0)G(S±0 , S±N , NΔt), (4)

where ρ̃ is the system’s reduced density tensor and G is the aug-
mented propagator. This augmented propagator contains the infor-
mation from the system–bath interaction and the system propaga-
tor. In this notation, S±n represents the forward–backward state of all
the sites at the nth time point, with the state of the ith site at this time
point being denoted by s±i,n. In the absence of any coupling between
the system and the bath, the bare propagator is given by

G(0)(S±0 , S±N , NΔt) =∑
S±1

⋅ ⋅ ⋅∑
S±N−1

P(0)S±0 ⋅ ⋅ ⋅S±N
(5)
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with

P(0)S±0 ⋅ ⋅ ⋅S±N
= K(S±0 , S±1 , Δt) × ⋅ ⋅ ⋅ × K(S±N−1, S±N , Δt). (6)

Here, P(0)S±0 ⋅ ⋅ ⋅S±N
is the bare path amplitude tensor and K(S±n , S±n+1, Δt)

is the forward–backward propagator connecting the bare system at
the nth time point to the (n + 1)th time point. Assuming that the
system Hamiltonian is time independent,

K(S±n , S±n+1, Δt) = ⟨S+n+1∣ exp(−
i
h̵

Ĥ0Δt)∣S+n ⟩

× ⟨S−n ∣ exp(
i
h̵

Ĥ0Δt)∣S−n+1⟩. (7)

Of course, if the Hamiltonian is explicitly time-dependent, we can
simply obtain the bare system forward–backward propagator by
directly solving the time-dependent Schrödinger’s equation. How-
ever, this detail does not have any impact on the formalism being
developed. The time-independent Hamiltonian is discussed purely
for notational simplicity. From Eqs. (5) and (6), we see that with-
out the bath, the bare propagator, G(0), and, consequently, the
reduced dynamics can be evaluated iteratively. The bath’s pres-
ence, however, introduces non-Markovian effects that prevent such
a straightforward evaluation of the dynamics.

The dynamics of a system coupled to a harmonic bath is well-
described by the formalism of Feynman–Vernon influence func-
tional. In this formalism, the augmented propagator is given by the
following equation:24,25

G(S±0 , S±N , NΔt) =∑
S±1

⋅ ⋅ ⋅∑
S±N−1

PS±0 ⋅ ⋅ ⋅S±N (8)

=∑
S±1

⋅ ⋅ ⋅∑
S±N−1

F[{S±n }]P
(0)
S±0 ⋅ ⋅ ⋅S±N

, (9)

where PS±0 ⋅ ⋅ ⋅S±N is the path amplitude tensor and F[{S±n }] is the influ-
ence functional for the given forward–backward system path. The
path amplitude tensor has O(d2NP

) coefficients, where d is the
dimensionality of a typical system site, N is the number of time
points, and P is the number of sites. The number of coefficients
grows exponentially with both the number of sites and the num-
ber of time points. In this work, we aim to combat this exponential
growth by factorizing this unmanageably large tensor into a network
of smaller ones.

For extended systems, it is often expected that the
Hamiltonian’s interactions and the correlations decrease as
the separation between the sites increases. In these cases, the system
can be very efficiently expressed as an MPS. With this in mind, we
start by representing the system’s reduced density matrix as an MPS,

ρ̃(S±n , nΔt) = ∑
{α(i,n)}

A
s±1,n
α(1,n)A

s±2,n
α(1,n) ,α(2,n) ⋅ ⋅ ⋅A

s±P−1,n
α(P−2,n) ,α(P−1,n)A

s±P,n
α(P−1,n). (10)

The indices that are used in the superscript are the “site” indices,
and they correspond to the forward–backward system state of the
different particles. The indices in the subscripts, {α(i,n)}, are, in the
DMRG literature, commonly called “bond” indices. In this work,

FIG. 1. Matrix product state representation of the density matrix of the system as
specified in Eq. (10).

however, we will refer to them as the “spatial bond” indices because
this decomposition is done along the system or spatial dimension.
Additionally, it should be noted that the parentheses associated with
these indices are included solely for visual clarity. Both the site and
spatial bond indices have two subscripts: the first subscript is for
the site (or particle) number and the second one indicates the time
point. This structure is visually depicted in Fig. 1. The dimension-
ality (or size) of the indices corresponding to the spatial bonds is
closely related to the entanglement of the system. The maximum
and average spatial bond dimension of the reduced density MPS
after the nth time step is mρ(n) = maxi(dim(α(i,n))) and m̄ρ(n)
= 1

P∑i dim(α(i,n)), respectively.
In principle, this MPS factorization is exact; however, for an

arbitrary density matrix, the maximum spatial bond dimension is
O(dP

). In practice, these bond dimensions are truncated, with the
maximum retained dimensionality of each being treated as a conver-
gence parameter. In many cases, it is possible to accurately represent
the density matrix with spatial bond dimensions significantly smaller
than the theoretical maximum. In fact, if the initial density matrix
has no entanglement and the system Hamiltonian is separable, the
density matrix at all times is exactly represented with a maximum

spatial bond dimension of one. In this case, the tensor, A
s±i,n
α(i−1,n) ,α(i,n), is

equivalent to the one-body reduced density matrix of the ith particle
after the nth time step. However, when the system Hamiltonian cou-
ples various sites, the spatial bond dimensions are seen to grow with
time, indicating an increase in the entanglement between the sites.

Next, we represent the forward–backward propagator, K, in the
form of an MPO,

K(S±n , S±n+1, Δt) = ∑
{α(i,n)}

W
s±1,n ,s±1,n+1
α(1,n) W

s±2,n ,s±2,n+1
α(1,n) ,α(2,n) ⋅ ⋅ ⋅W

s±P−1,n ,s±P−1,n+1
α(P−2,n) ,α(P−1,n)

×W
s±P,n ,s±P,n+1
α(P−1,n) . (11)

As before, the superscripts correspond to the site indices and
the subscripts correspond to the spatial bond indices. Unlike the
reduced density MPS, which has a single-site index (s±i,n) associated
with each tensor, the forward–backward propagator MPO has two
(s±i,n and s±i,n+1). The two indices represent the same particle at dif-

ferent time points. Loosely speaking, the tensor, W
s±i,n ,s±i,n+1
α(i−1,n) ,α(i,n) , can be

thought of as an effective forward–backward propagator acting on
the ith particle.

Generally, any forward–backward propagator can be repre-
sented as an MPO, but doing so may be as costly as directly solving
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the Schrödinger equation. Fortunately, using matrix product rep-
resentations for studying dynamics of the bare system has been a
topic of intense research over the years. Various methods such as
time-evolving block decimation (TEBD)5,47,48 and time-dependent
DMRG (tDMRG)5,7 have been developed to directly simulate the
time evolution of wave functions of extended systems with short-
ranged interactions. For systems with long-ranged interactions, the
recently introduced MPO WI,II method49 can generate very efficient
representations of the propagator. Additionally, a time-dependent
variational principle (TDVP)50–52 approach has also been developed
that allows for the treatment of arbitrary Hamiltonians. While TEBD
and MPO WI,II calculate the propagators, Krylov subspace-based
methods and TDVP often approximate the action of the propa-
gator on the wave function. A comprehensive account of these
methods has been provided by Paeckel et al.6 Detailed comparisons
of such approaches for the purposes of simulating the propaga-
tor, especially in the context of the current method, are extremely
interesting and beyond the scope of this paper. For the current devel-
opment, we will simply assume that an MPO representation of the
forward–backward propagator is available.

To incorporate the Feynman–Vernon influence functional, in
the standard TNPI framework,29,30,32,33 an SVD factorization is per-
formed on the forward–backward system propagator along the time
dimension, enabling us to represent the path amplitude tensor as an
MPS,

PS±0 ⋅ ⋅ ⋅S±N = ∑{βn}
TS±0

β0
⋅ ⋅ ⋅TS±n

βn−1 ,βn
⋅ ⋅ ⋅TS±N

βN−1
, (12)

which can be acted upon by the influence functional MPO. Unlike
in the MPS decomposition of the density matrix, Eq. (10), the site
indices, here, correspond to the forward–backward state of the entire
extended system at different time points. The bond indices, {βn},
represent the coupling between different time points and will be
referred to as the temporal bonds for the remainder of this work.
More specifically, the dimensionality of the temporal bond indices is
related to the non-Markovian nature of the dynamics. In light of the
MP factorization of the system described above in Eq. (10), Eq. (12)
can be rewritten as

PS±0 ⋅ ⋅ ⋅S±N = ∑{βn}
TS±0

β0
⋅ ⋅ ⋅TS±n

βn−1 ,βn
⋅ ⋅ ⋅TS±N

βN−1
, (13)

where the symbol T is an MP representation of the corresponding
T tensors decomposed along the system or spatial dimension. Thus,
we have a product of tensor products, i.e., a 2D array of tensors.

To facilitate this 2D decomposition of the path integral expres-
sion, we proceed by using SVD to factor the forward–backward
propagator MPO in Eq. (11),

W
s±1,n ,s±1,n+1
α(1,n) = ∑

β(1,n)

U
s±1,n
α(1,n) ,β(1,n)

R
s±1,n+1
β(1,n)

, (14)

W
s±i,n ,s±i,n+1
α(i−1,n) ,α(i,n) = ∑

β(i,n)

U
s±i,n
α(i−1,n) ,α(i,n) ,β(i,n)

R
s±i,n+1
β(i,n)

, 1 < i < P, (15)

W
s±P,n ,s±P,n+1
α(P−1,n) = ∑

β(P,n)

U
s±P,n
α(P−1,n) ,β(P,n)

R
s±P,n+1
β(P,n)

, (16)

FIG. 2. Factorization of the forward–backward MPO following Eqs. (14)–(16).

where U and R are the factors obtained through the SVD proce-
dure. The square-root of diagonal matrix of singular values has been
absorbed into the U and R tensors. As per our convention, the bonds
along the spatial and temporal dimensions are denoted by α and β,
respectively. Figure 2 shows this structure in the form of a tensor
diagram.

Now, we can put the expressions together to derive the ten-
sors constituting the MPs, T, in Eq. (13). Generally speaking, each
of these constituent tensors, represented here by M, possesses five
indices: one site, s±i,n, and four bonds (α(i,n), β(i,n), α(i−1,n), and β(i,n−1)),
where the values of i and n correspond to the location of the tensor
in the 2D grid structure, which is illustrated in Fig. 3. It is worth not-
ing that the tensors on the edges of the grid have a slightly different
structure, as the number of bond indices differs. The tensors corre-
sponding to the initial time point, or equivalently the first column,
are given as

M
s±1,0
α(1,0) ,β(1,0)

= U
s±1,0
α(1,0) ,β(1,0)

, (17)

M
s±i,0
α(i,0) ,β(i,0) ,α(i−1,0)

= U
s±i,0
α(i−1,0) ,α(i,0) ,β(i,0)

, (18)

M
s±P,0
α(P−1,0) ,β(P,0)

= U
s±P,0
α(P−1,0) ,β(P,0)

. (19)

The expressions for the final point, last column, are as follows:

FIG. 3. Factorization of the forward–backward MPO.
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M
s±1,N
β(1,N−1)

= R
s±1,N
β(1,N−1)

, (20)

M
s±i,N
β(i,N−1)

= R
s±i,N
β(i,N−1)

, (21)

M
s±P,N
β(P,N−1)

= R
s±P,N
β(P,N−1)

. (22)

Finally, for an intermediate time point, n,

M
s±1,n
α(1,n) ,β(1,n) ,β(1,n−1)

= R
s±1,n
β(1,n−1)

U
s±1,n
α(1,n) ,β(1,n)

, (23)

M
s±i,n
α(i,n) ,β(i,n) ,α(i−1,n) ,β(i,n−1)

= R
s±i,n
β(i,n−1)

U
s±i,n
α(i−1,n) ,α(i,n) ,β(i,n)

, (24)

M
s±P,n
β(P,n) ,α(P−1,n) ,β(P,n−1)

= R
s±P,n
β(P,n−1)

U
s±P,n
α(P−1,n) ,β(P,n)

. (25)

Note that here, the sites on the final time point are not con-
nected together, Eqs. (20)–(22), inheriting the fundamental asym-
metry between the initial and final time points in the structure in
Fig. 2.

The flexibility of this factorization becomes apparent when the
bath interactions, in the form of an influence functional, are incor-
porated. The 2D structure discussed until now can be thought of
as a series of generalized tensor products along the “columns” that
represent the state of the full system at a given time point or along
the “rows” that represent the state of one site at all times (i.e.,
the path amplitude tensor of that particular site). While thinking
of it as a collection of columns manifestly connects the method
to its tDMRG heritage, its identification as a collection of “row”
tensors serves to illustrate how this multisite method is related
to TNPI.33 (On a different note, in this picture, MPI would be
similar to a method that iterates over the rows of this 2D struc-
ture.) If there was no interaction between the sites, the rows would
separate out and every site would behave like the standard TNPI
method. This makes it quite simple to account for the influence
functional.

Because we are considering site-local baths, the total influence
functional is just a product of the influence functionals on each of
the sites. The structure of the influence functional is the same irre-
spective of the site. Hence, if we consider the path of the ith site as
being given by {s±i,n}, then the influence functional8 is

F[{s±i,n}] = exp
⎛

⎝
−

1
h̵ ∑0≤k≤N

Δsi,k ∑
0≤k′≤k
(Re(ηkk′)Δsi,k′+2iIm(ηkk′)s̄i,k′)

⎞

⎠
,

(26)
where Δsi,k = s+i,k − s−i,k and s̄i,k =

s+i,k+s−i,k
2 and ηkk′ are the coeffi-

cients obtained by discretizing the bath response function along
the quasi-adiabatic path.24,25 It is possible to have different
baths associated with different sites, leading to site-dependent
η-coefficients and site-dependent influence functionals; however,
for notational convenience, we describe the method, assuming that
the baths on different sites are characterized by the same spectral
density.

We have already discussed the analytical form for the matrix
product operator for the influence functional, which we refer to
as the influence functional (IF) MPO.33 Following that procedure,

FIG. 4. Schematic showing the application of the influence functional MPO to the
2D MS-TNPI structure. Only the influence functionals for the first and the last sites
are shown here. The purple vertices correspond to the “projection” operator on the
last time point (cf. Ref. 33).

Eq. (26) is factorized based on the k time point,

Fk[{s
±
i,n}] = exp

⎛

⎝
−

1
h̵

Δsi,k ∑
0≤k′≤k

(Re(ηkk′)Δsi,k′ + 2iIm(ηkk′)s̄i,k′)
⎞

⎠
,

(27)

and each Fk is given an MPO representation, Fk. The MPOs are
applied to each row of the 2D multisite TNPI structure for each
system site in order of increasing k, as detailed in Ref. 33. The opera-
tions on the first and the last rows (sites) are schematically indicated
in Fig. 4.

The resulting tensor network corresponds to the path ampli-
tude tensor. By tracing over the internal system indices and contract-
ing all the temporal bonds, we can obtain the augmented propagator,
G in Eq. (9), expressed as an MPO, which will be called the AP
MPO. This is achieved most easily by considering the network as
a sequence of columns, each representing the state of the system at
a given time point. Tracing over the internal system indices turns
these columns into MPOs. From here, the AP MPO is obtained
by multiplying all the column MPOs together in a sequential man-
ner, thereby contracting the temporal bonds. By applying this AP
MPO to an MPS, representing the initial state of the system, we
can obtain the corresponding time-evolved final state. This aug-
mented propagator-based formulation is particularly helpful if we
are interested in studying the behaviors of a variety of different
initial states. However, usually only the dynamics arising from a spe-
cific initial system state is desired. In such cases, we can obtain the
resulting final state in a more efficient manner by reducing the prob-
lem to one of the sequential applications of the column MPOs to
the initial state MPS. As MPS–MPO operations are much cheaper
than MPO–MPO operations, the AP MPO should not be com-
puted unless it is required. For the examples given here, we will
restrict our attention to the MPS–MPO contraction scheme. (See the
work of Schollwöck4 for additional information on these MPO/MPS
operations.)

It is well-known that for simulations in the condensed phase,
the non-Markovian memory does not extend for all of history. This
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means that the paths can be truncated after L time steps to simu-
late a non-Markovian memory of time-span LΔt. To develop such
an iteration procedure, one needs to know the full state of the sys-
tem at any time point. We have access to that information for the
extended system in the form of the column corresponding to the
relevant time point in the 2D lattice structure, Fig. 3. Iteration can
also be done in two ways—for the augmented propagator as done
in Ref. 33 or, as typically done, for a particular initial state.24,25 In
the interest of simplicity of discussion and computational efficiency,
we describe the iteration scheme for a particular initial reduced
density tensor, C0 = ρ̃(0). For a simulation with memory length
L, in the iterative regime, there would always be L + 1 columns,
Cn for 1 ≤ n ≤ L + 1. The iterative procedure is outlined below. In
the following steps for iterative propagation, a tensor contraction is
represented by ⊗.

1. Update C0 by applying the MPO, C1, to it. C0 ← C1 ⊗ C0.
2. Copy the other columns in by “sliding them” back by one.

Cn ← Cn+1 for n < L.
Note at this stage that the new first column is no longer an
MPO.

3. Update the second last column, CL, by multiplying by the cor-
responding U tensors obtained from the SVD decomposition
of the forward–backward MPO in Eqs. (14)–(16).

4. Insert the last column according to Eqs. (20)–(22).
5. Apply the IF MPO in a row-wise fashion.
6. Trace over the site indices of C1 to obtain an MPO in the first

column.

Steps 1–6 are repeated as many times as required. The salient
ideas of the iterative procedure are schematically outlined
in Fig. 5.

Finally, given the immense difficulty in the problem at hand, it
is of interest to estimate the complexity of the algorithm outlined.
The two most computationally demanding operations that occur
during each time step are the application of the IF MPO and the
contraction of the resulting tensor network. Roughly speaking, the
cost of applying the IF MPO is O(m3

t w
2
pw

2
I d2
) and cost of the con-

traction is O(m3w2
pmt). Here, mt is the maximum temporal bond

dimension, m is the maximum bond dimension of the contracting

FIG. 5. Iteration of the MS-TNPI network. At step (5), note that the first column is
not an MPO. After contraction with identity MPS, it becomes a MPO.

MPS, and wI is the maximum bond dimension of the IF MPO. The
maximum bond dimension of the forward–backward propagator of
the bare system is denoted by wp, and d is the dimensionality of a
typical system site. Although the magnitude of mt might be depen-
dent on the memory length, L, the exponential growth of complexity
within memory is effectively curtailed.33 Since the local vibrational
baths would typically consist of high frequency modes (implying
that the non-Markovian memory length, L, is not very large) and
the site–site couplings would be quite high, the cost would probably
be dominated by the contraction process. However, if the local baths
are very strongly coupled, the temporal bond dimension would grow
much faster than the bond dimension along the system axis, and the
pattern would be reversed.

III. RESULTS
For the purposes of illustrating the multisite TNPI method, we

consider spin chains with nearest-neighbor intersite coupling. The
Hamiltonian is given as

Ĥ0 =
P

∑
i=1

ĥ(1)i +
P−1

∑
i=1

ĥ(2)i,i+1, (28)

where

ĥ(1)i = ϵσ̂(i)z − h̵Ωσ̂(i)x (29)

is the one-body term. The strength of the transverse field is hΩ, and
ϵ represents any asymmetry present in the system due to a longi-
tudinal field. The two-body interaction term is given by a general
nearest-neighbor Hamiltonian,

ĥ(2)i,j = δj,i+1(Jxσ̂(i)x σ̂( j)
x + Jyσ̂(i)y σ̂( j)

y + Jz σ̂(i)z σ̂( j)
z ). (30)

Here, σ̂(i)x , σ̂(i)y , and σ̂(i)z are the Pauli spin matrices on the ith
site. Each of the sites is also coupled with its vibrational degrees of
freedom described by the harmonic bath given in Eq. (2) with the
system–bath coupling operator ŝi = σ̂(i)z . For the examples shown
here, the harmonic bath is characterized by an Ohmic spectral
density with an exponential decay,

J(ω) =
π
2

h̵ξω exp(−
ω
ωc
), (31)

where ξ is the dimensionless Kondo parameter and ωc is the char-
acteristic cutoff frequency. In the Appendix, we outline the second-
order Suzuki–Trotter splitting TEBD scheme used here to construct
the forward–backward propagator MPO.

Depending on the nature of the intersite coupling, there are
many models for interacting spin chains. Here, we consider the
dynamics of the Ising model, the XXZ-model, and the Heisen-
berg model with P = 31 sites, coupled to site-local harmonic baths.
The states of each system site are labeled ∣+ 1⟩ and ∣− 1⟩, which
are eigenstates of the σ̂z operator with an eigenvalue of +1 and
−1 respectively. Although the initial condition for MS-TNPI can
be any arbitrary reduced density MPS (for example, a DMRG
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ground state), here for simplicity, it is defined as the direct prod-
uct state of all spins being in ∣+ 1⟩. An SVD compression scheme
with a truncation threshold of χ, which is treated as a convergence
parameter, is applied to the propagator MPO and the results of any
MPS–MPO multiplications. Under this scheme, singular values, λn,
are discarded such that

∑n∈discarded λ2
n

∑n λ2
n

< χ. (32)

Therefore, for the following simulations, in addition to the
Δt and L parameters standard to path integral simulations, χ
is also a convergence parameter. Unlike the single-site version,
in the most general multisite case, there are two factors that
affect the Trotter error and, correspondingly, the converged Δt.
First, there is a Trotter error associated with the system–solvent
splitting. This is very similar to the single-site case. Addition-
ally, the multisite problem also has a Trotter error associated
with the splitting of the bare system propagator under the TEBD
scheme.

Transition from an underdamped coherent to a fully inco-
herent behavior is a hallmark of system–solvent dynamics. Here,
we have three different parameters that affect the nature of
dynamics—the strength of the intersite coupling (quantifying the
ability of the spin chain to act as a self-bath), the temperature, and
the strength of the system–solvent coupling.

A. Ising model
We first consider a transverse-field Ising model (Jx = Jy = 0

and Jz ≠ 0) coupled with local vibrations. The longitudinal field
is absent, ϵ = 0, and a unit transverse field Ω = 1 is applied. The
dynamics is simulated for different values of the intersite cou-
pling, Jz = ±0.2,±0.4,±0.8, and ±1.6. Here, the bath is characterized
by ξ = 0.25 and ωc = 5Ω, and it is held at an inverse tempera-
ture of hβΩ = 1. The convergence of Jz = 1.6 is the most difficult.

Therefore, in Fig. 6, we demonstrate the convergence patterns for
this parameter.

Figure 7 shows ⟨σ̂z(t)⟩ for the 16-th spin in the chain. We
observed that the finite size effects of the chain were limited only
to a few edge sites and the dynamics of this middle monomer
remained unaffected within the time-span of simulation, implying
that this is the bulk dynamics. A time step of ΩΔt = 0.25 was found
to be converged for Figs. 7(a)–7(c). When the bath was present, a
memory length of LΔt = 1 was used, although acceptable conver-
gence was already achieved at LΔt = 0.75. According to Fig. 6, for
∣Jz ∣ = 1.6hΩ [Fig. 7(d)], ΩΔt was converged at 0.20. A converged
compression was done at a cutoff of χ = 10−11. The dynamics of
the bare system is shown for the various cases in dashed lines. It,
unlike the dynamics in the presence of the dissipative bath, remains
the same irrespective of the sign of Jz . For the bare dynamics, we
could use the MS-TNPI method and it would reduce to a density
matrix version of TEBD. However, for efficiency, we propagated
the wave function using TEBD with the same cutoff of χ = 10−11.
In Fig. 7, we see that increasing the intersite couplings leads to a
more incoherent dynamics. For the high intersite coupling case,
the excess dissipation happens primarily due to the extended Ising
chain.

The case of Jz = −0.2hΩ [Fig. 7(a), red line] was discussed by
Makri40 for a system with ten sites. We recover identical edge spin
dynamics with our method. We observe that the finite size of the
chain affects more sites when Jz is larger (not shown in figure). This
is because, for larger values of Jz , the sites “know” more about their
neighbors, making the difference between an edge site with only one
neighbor and a middle site with two neighbors more obvious. It is
interesting that, although the difference of sign in the values of Jz
does not impact the dynamics of the bare system, it leads to profound
differences once the bath is coupled. Positive values of Jz appear to
make the population dissipation faster.

There are two competing factors that contribute to the com-
putational complexity—the non-Markovian memory caused by the
presence of the bath and the entanglement that develops between
the sites as time evolves causing the bond dimension of the MPS

FIG. 6. Convergence of dynamics with respect to various parameters for the Ising model with Jz = 1.6. (a) Convergence with respect to L for ΩΔt = 0.25. (b) Convergence
with respect to Δt for LΔt = 1.
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FIG. 7. Dynamics of a spin in the bulk as represented by ⟨σ̂z(t)⟩ for the 16-th site of the Ising model coupled to an Ohmic bath characterized by ξ = 0.25 and ωc = 5 Ω at
an inverse temperature of hΩβ = 1. Dashed line: without bath. (a) ∣Jz∣ = 0.2 hΩ. (b) ∣Jz∣ = 0.4 hΩ. (c) ∣Jz∣ = 0.8 hΩ. (d) ∣Jz∣ = 1.6 hΩ.

to grow. The average bond dimension of the time-evolved density
matrix can be used as a metric for the entanglement between the
sites. In Fig. 8, we show its evolution as a function of time for the
parameters shown here. Although for the bare system case shown in

FIG. 8. Average bond dimensions of the reduced density MPS for the bare (dashed
line) and the full system for various intersite couplings. Positive Jz is represented
by the full solid line, and negative Jz is represented by the dotted-dashed line.

Fig. 7 we propagated the wave function, here, for consistency, the
density matrix is propagated. We note that the average bond dimen-
sion grows faster for the bare system in comparison to all the cases
with the bath, demonstrating the decohering effect brought in by
the dissipative medium. Although the bath introduces a memory,
it severely restricts the growth of the bond dimension and, equiv-
alently, the entanglement. It is interesting to note that for higher
values of interspin couplings, Jz , the difference in bond dimension
between the positive and the negative values increases. This is also
reflected in the fact that the dynamics becomes drastically different
[cf. Figs. 7(c) and 7(d)]. The eventual decrease in the bond dimen-
sion in the presence of a bath reflects its ability to disentangle the
system states.

B. XXZ-model
Another common model is the so-called XXZ-model, where

the two-body interaction term is defined by Jx = Jy = J ≠ 0. In the
absence of any external field, the ratio between Jz and J is an order
parameter for quantum phase transitions at zero temperature.53

When Jz < −J, the ground state is ferromagnetic. There is a dis-
ordered spin-liquid phase when −1 < Jz

J < 1, and finally, for Jz > J,
there is an antiferromagnetic state.
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Here, we consider an XXZ system in an external transverse field
of strength Ω = 1 and with a longitudinal field of ϵ = 0. The har-
monic bath is once again held at an inverse temperature of hΩβ = 1.
However, in these examples, it is characterized by ξ = 0.2 and
ωc = 2Ω. We consider cases where Jz = ±5J and Jz = 0. The time
step used for the convergence is ΩΔt = 0.25, and the non-Markovian
memory is LΔt = 1.25. The compression was done at a cutoff of
χ = 10−11. The dynamics of ⟨σ̂z(t)⟩ for a bulk spin is demonstrated
for J = 0.1 and Jz = 0,±0.5 in Fig. 9.

We note that the dynamics corresponding to the different val-
ues of Jz are totally different, even in the absence of the bath. It
seems that the dissipation effects increase as the absolute value of
Jz increases. However, this increase in dissipation does not hap-
pen symmetrically. The effects coming from a negative Jz are much
more pronounced than those caused by a positive value. This dif-
ference may owe its origin to the fact that a negative Jz stabilizes
the initial state of all up spins, whereas positive values of Jz desta-
bilize this state further. In addition, the energy spectrum of the
bare XXZ system is different in the two cases. These differences
and the full effects of vibrational baths are very interesting and
deserve a thorough analysis, which will be the subject of future
work.

Next, we study the effect of temperature on the dynamics of
these XXZ systems. With wave-function methods such as DMRG, it
becomes especially difficult to perform comparatively high temper-
ature simulations because a large number of eigenstates of the bath
need to be accounted for. In Fig. 10, we demonstrate the dynamics
of the Jz = 0 system at different temperatures ranging from β = 10
to β = 0.1. As per our intuitive understanding, at higher tempera-
tures, the oscillations get washed away, showing a transition from an
underdamped coherent oscillatory dynamics at low temperatures to
a fully incoherent dynamics at high temperatures.

C. Heisenberg model
The most general model for interacting spin chains is the so-

called “Heisenberg” model. The Hamiltonian is characterized by a

FIG. 10. Dynamics of ⟨σ̂z(t)⟩ for the XXZ bulk spin (with Jz = 0) with the bath of
Fig. 9 at different temperatures.

two-body spin–spin interaction term that involves independent cou-
plings along X, Y , and Z. The bath used for this example is the same
as the one used for the XXZ-model examples.

The dynamics of ⟨σ̂z(t)⟩ for a state in the bulk is shown
in Fig. 11 for the case of Jx = 0, Jy = 0.1, Jz = ±0.5. The simulation
was converged at a time step of ΩΔt = 0.375, a memory length of
LΔt = 1.125, and a cutoff of χ = 10−10. While we report the dynam-
ics of only the bulk spin here, for the case of Jz = 0.5, our simulations
reproduce the previously obtained results39 for the terminal edge
spin.

Next, we explore the dissipation effects of the bath. In
Fig. 12, we demonstrate the dynamics of the bulk spin for the
case of Jz = 0.5 where the bath is characterized by different
Kondo parameters. The dynamics was converged at LΔt = 1.875
for ξ = 0.6 and ξ = 0.8. The converged time step ΩΔt remained
unchanged at 0.375. One can see the oscillatory nature of the
coherent dynamics decrease on increasing the coupling between
the system and the bath due to the dissipative effects of the
environment.

FIG. 9. Dynamics of a spin in the bulk as represented by ⟨σ̂z(t)⟩ for the 16-th site of the XXZ-model coupled to a harmonic bath characterized by ξ = 0.2 and ωc = 2Ω at
an inverse temperature of hΩβ = 1. Dashed line: without bath. (a) J = 0.1, Jz = 0. (b) J = 0.1, ∣Jz∣ = 0.5.
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FIG. 11. Dynamics of a spin in the bulk represented by ⟨σ̂z(t)⟩ for the 16-th site
of the Heisenberg model coupled to the same bath and temperature as Fig. 9.
Dashed line: without bath.

FIG. 12. Dynamics of a bulk spin represented by ⟨σ̂z(t)⟩ for the Heisenberg model
with Jz = 0.5 and different values of Kondo parameters for an Ohmic bath with
ωc = 2Ω and an inverse temperature of hΩβ = 1.

IV. CONCLUSION
System–solvent decomposition is used in various fields of

study and is simulated using the Feynman–Vernon influence func-
tional. In such applications, there is a necessity to have a low-
dimensional quantum system for computational feasibility. How-
ever, many interesting problems involve extended systems that can
be modeled as collection of many low-dimensional units. Typical
examples involve spin chains to model magnetism and charge or
exciton transfers. Such systems have historically been studied with-
out any dissipative environment. Early attempts at applying the same
DMRG-based ideas led to interesting applications that resorted to
truncating a wave-function description of the environment modes as
well.35 MPI can simulate such extended systems with an associated
harmonic bath using Feynman–Vernon influence functionals by
iteratively incorporating the various sites to side-step the exponen-
tial growth of storage and computational requirements for extended
quantum systems. However, it is often useful to simulate the full den-
sity matrix, especially for many-body observables. In this paper, we

have developed a different approach to simulating these systems by
marrying tensor network structures with influence functionals.

Recently, various methods based on tensor networks have been
proposed to compress the path integrals, thereby reducing the stor-
age requirements for the simulation. Such compressions, if possible,
for multisite systems would be especially lucrative because the stor-
age requirements generally grow exponentially with the number
of sites. Tensor network path integral methods naturally suggest
a further decomposition along the system dimension, leading to a
multisite method. In this paper, we have introduced a multisite ten-
sor network framework called MS-TNPI, which solves the problem
of an extended quantum system coupled with dissipative environ-
ments extremely effectively. It is a 2D extension of the 1D MPS
structure used in the TNPI.33

The most essential part of MS-TNPI starts with the definition
of a forward–backward propagator for the extended system. This
is a common problem that is extensively dealt with in the
literature.5,6,35,47 We show how we can essentially use these propaga-
tors and refactorize them to obtain the current 2D structure. We also
discuss how, by viewing the aforementioned tensor network as a col-
lection of rows containing the path amplitude tensors corresponding
to every site, it is now possible to apply the influence functional MPO
for the local bath in a systematic manner. Exploration of other exist-
ing methods for MPO–MPS style wave function propagation in the
current context would be an interesting avenue of research. In par-
ticular, methods such as WI,II and TDVP, if adapted to the current
framework, would enable the simulation of significantly long-ranged
interacting systems in the presence of local phononic modes. The
decoupling of the structure of the system Hamiltonian from the
algorithm is an advantage of the current framework.

In general, the MS-TNPI structure can be used to calculate the
augmented propagator for the extended quantum system. In this
paper, however, we have outlined efficient algorithms that focus on
using it to generate the full reduced density tensor corresponding to
the entire extended system at any point of time in the form of an
MPS. MS-TNPI, by its formulation, is also capable of handling arbi-
trarily complex system initial states represented in the MPS form.
While having the global knowledge of the system states means that
the storage requirements increase with the number of sites, the 2D
generalization of the matrix product structure maximizes the com-
pression that can be achieved. In fact, the memory requirement in
the MS-TNPI structure grows almost linearly with the number of
sites instead of exponentially. It is also this global knowledge that
enables trivial memory iterations corresponding to the finiteness of
the non-Markovian memory and efficient evaluation of many-body
observables. While the current development uses the analytical form
for the influence functionals derived for harmonic baths, it would
be interesting to explore the prospects of using the present struc-
ture with the more general numerical algorithm for calculating the
influence functionals as MPO derived by Ye and Chan.32

MS-TNPI is demonstrated through illustrative examples of
various spin chains coupled to local harmonic baths. We have
simulated the Ising model, the XXZ-model, and the Heisenberg
model with various different parameters. We have shown that the
site-local baths severely restrict the growth of the bond dimen-
sion in the reduced density MPS. Consequently, in comparison to
the bare system, the intersite entanglement grows slower and often
even decreases in the presence of dissipative environments. We
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have explored the three different causes of decohering of the sys-
tem dynamics—the inter-site mechanism, the temperature-induced
decoherence, and the local bath-induced decoherence. There are
interesting features of the dynamics for the various phases of the
XXZ-model that require further investigation. This would be the
subject of future work.

MS-TNPI promises to be an exciting method for extended sys-
tems. It makes it possible to study various energy and charge transfer
processes and loss of coherence in chains of qubits. Such applications
shall be the focus of our research in the near future. Additionally, the
novelty of the structure opens up possibilities for further improve-
ments and developments of which we have only begun scratching
the surface.
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APPENDIX: SYSTEM FORWARD–BACKWARD
PROPAGATOR IN MPO REPRESENTATION

For the simple case of the nearest-neighbor interacting Hamil-
tonian, it is very easy to define an algorithm for calculating
the second-order Suzuki–Trotter split forward–backward propa-
gator. This is a “forward–backward” version of the second-order
time-evolved block decimation scheme.6

Let the Hamiltonian be factorized as

Ĥ0 =
P−1

∑
i=1

Ĥi,(i+1), (A1)

where Ĥi,(i+1) takes the one-body term into account as well. To get
the second-order splitting, it is usual to incorporate the terminal
single-body terms fully into the corresponding terms. Everything
else is split into halves,

Ĥ1,2 = ĥ(1)1 + ĥ(2)1,2 +
1
2

ĥ(1)2 , (A2)

Ĥi,(i+1) =
1
2

ĥ(1)i + ĥ(2)i,(i+1) +
1
2

ĥ(1)(i+1), 2 ≤ i < P − 1, (A3)

Ĥ(P−1),P =
1
2

ĥ(1)(P−1) + ĥ(2)(P−1),P + ĥ(1)P . (A4)

Traditionally, these terms are grouped as “even” and “odd” as
follows:

Ĥodd =
i odd

∑
1≤i<P

Ĥi,(i+1), (A5)

Ĥeven =
i even

∑
1≤i<P

Ĥi,(i+1), (A6)

where Ĥodd and Ĥeven do not commute. Under the second-order
Suzuki–Trotter factorization, the forward–backward propagator

K(S±n , S±n+1, Δt) ≈ ∑
S±

n′ ,S
±
n′′

Kodd(S±n , S±n′ ,
1
2

Δt)Keven(S±n′ , S±n′′ , Δt)

× Kodd(S±n′′ , S±n+1,
1
2

Δt), (A7)

where S±n′ and S±n′′ are dummy variables that represent the
forward–backward state of the system at the two intermediate
time points. In the notation used here, Kodd(S±n , S±n+1, Δt) and
Keven(S±n , S±n+1, Δt) are the forward–backward propagators associ-
ated with Ĥodd and Ĥeven, respectively. The odd and even terms
commute with themselves, so the forward–backward propagators
can be factorized further,

Kodd(S
±
n , S±n+1, Δt) =

i odd

∏
1≤i<P

Ki(s±i,n, s±i+1,n, s±i,n+1, s±i+1,n+1, Δt), (A8)

Keven(S±n , S±n+1, Δt) =
i even

∏
1≤i<P

Ki(s±i,n, s±i+1,n, s±i,n+1, s±i+1,n+1, Δt), (A9)

where the two-body forward–backward propagator

Ki(s±i,n, s±i+1,n, s±i,n+1, s±i+1,n+1, Δt)

= ⟨s+i,n+1, s+i+1,n+1∣ exp(−
i
h̵
Ĥi,(i+1)Δt)∣s+i,n, s+i+1,n⟩

× ⟨s−i,n, s−i+1,n∣ exp(
i
h̵
Ĥi,(i+1)Δt)∣s−i,n+1, s−i+1,n+1⟩. (A10)

Using an SVD, we can factor this two-body (multi-site)
operator into a pair of single-body (single-site) operators,

Ki(s±i,n, s±i+1,n, s±i,n+1, s±i+1,n+1, Δt) = ∑
α(i,n)

W
s±i,n ,s±i,n+1
α(i,n) W

s±i+1,n ,s±i+1,n+1
α(i,n) . (A11)

Plugging this expression into Eqs. (A8) and (A9) gives

Kodd(S
±
n , S±n+1, Δt) =

i odd

∏
1≤i<P

⎛

⎝
∑

α(i,n)
W

s±i,n ,s±i,n+1
α(i,n) W

s±i+1,n ,s±i+1,n+1
α(i,n)

⎞

⎠
, (A12)

Keven(S±n , S±n+1, Δt) =
i even

∏
1≤i<P

⎛

⎝
∑

α(i,n)
W

s±i,n ,s±i,n+1
α(i,n) W

s±i+1,n ,s±i+1,n+1
α(i,n)

⎞

⎠
. (A13)
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Note that by introducing unit-dimensional bond indices between the
products, they can be reduced to proper MPOs. Thus, the resulting
MPOs would have alternating bonds of unit dimension. Finally, the
full second-order Suzuki–Trotter split forward–backward propaga-
tor can be obtained through sequential MPO–MPO multiplications
involving Eqs. (A12) and (A13) according to Eq. (A7).
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