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Effect of temperature gradient on
quantum transport

Amartya Bose *a and Peter L. Walters bc

The recently introduced multisite tensor network path integral (MS-

TNPI) method [Bose and Walters, J. Chem. Phys., 2022, 156, 24101]

for simulating quantum dynamics of extended systems has been

shown to be effective in studying one-dimensional systems coupled

with local baths. Quantum transport in these systems is typically

studied at a constant temperature. However, temperature seems

to be a very obvious parameter that can be spatially changed

to control this transport. Here, MS-TNPI is used to study the

‘‘non-equilibrium’’ effects of an externally imposed temperature

profile on the excitonic transport in one-dimensional Frenkel

chains coupled with local vibrations. We show that in addition to

being important for incorporating heating effects of excitation by

lasers, temperature can also be an interesting parameter for quan-

tum control.

Quantum transport in extended open systems has been one of
the holy-grails of quantum dynamics. It combines the difficulty
of treating extended quantum systems with the difficulty of
treating open quantum systems, both of which potentially lead
to exponential growth of computational complexity. However,
such systems are ubiquitous in nature, and hence, are of great
importance. From magnetic materials to molecular aggregates, a
vast variety of interesting physical phenomena lend themselves
to be modeled as extended one-dimensional quantum systems
interacting with open thermal environments. Wave function-
based methods such as density matrix renormalization group1–6

(DMRG) and multi-configuration time-dependent Hartree7–9

(MCTDH and ML-MCTDH) and related methods have proven
to be exceptionally useful in simulating the quantum dynamics
of extended systems. However, due to their computational

complexity, these methods are typically less useful when it
comes to simulations of open systems.

Path integral methods have often been presented as a viable
solution to the problem of calculating and storing the wave
functions for open systems. With these methods, the main
challenge is that the number of paths considered in the path
integral increases exponentially with the number of time steps.
However, this exponential proliferation of the system path list
can be curtailed through the use of an iterative procedure that
exploits the rapid decay of correlation between well-separated
time points. Although the computational complexity still
increases exponentially with the number of time points
retained within memory (L), this is usually much smaller then
the typical number of time points in the simulation. Thus, the
quasi-adiabatic propagator path integral10–13 (QuAPI) methods,
which are based on Feynman–Vernon influence functional,14

make simulations of general open quantum systems much
more approachable. Of late, the usage of tensor networks to
facilitate simulations with influence functionals has also
become quite common.15–18 Ideas from these tensor network-
based influence functional methods have motivated a recent
extension of DMRG to simulating the non-equilibrium
dynamics of extended open quantum systems.19 This multisite
tensor network path integral (MS-TNPI) method has also been
used to explore the dynamics and spectrum of the B850 ring of
the light harvesting subsystem20 and study the effects of
phononic scattering on spin transport.21

Despite their utility, the application of traditional path
integral methods to extended open quantum systems suffers
hugely from exponential scaling stemming from two different
sources. First, the dimensionality of the system scales exponen-
tially with the number of ‘‘units’’ or ‘‘entities’’ involved. Suppose
we have a setup involving P units each with dimensionality d,
then the total dimensionality of the system is dP. Additionally,
the presence of thermal environments renders the dynamics
non-Markovian. Consequently, there is an exponential scaling
with respect to the number of time steps within memory. The
base of this exponential scaling is related to the dimensionality
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of the system. So, if the memory length is L for this hypothetical

problem, the computational complexity would go as O dPð Þ2L
� �

.

This is the issue that MS-TNPI addresses by using a DMRG-like
decomposition of the system along the various sites in addition
to a decomposition of the ‘‘paths’’ along the temporal
dimension.

The present paper uses MS-TNPI to explore the effects of
temperature differences on excitonic transport in extended
open systems. Such temperature differences can be caused by
an external temperature gradient being applied across a mole-
cular wire or more commonly as a side-effect of heat generated
during laser-induced excitations. Thus, to accurately simulate
such phenomena, one would need to worry about spatially
inhomogeneous temperatures. In addition, we want to explore
the possibilities of using non-constant temperature profiles as
a potentially useful parameter for controlling and changing the
characteristics of the quantum transport.

Method

In this work, we use the well-known Frenkel form with nearest
neighbor couplings to explore the effects of non-constant
temperature profiles on exciton transport. The Hamiltonian
for a system with P units is given by

Ĥ0 ¼ e
XP
j¼1

ej
�� � ej
� ��þ �hJ

XP�1
j¼1

ej
�� � ejþ1
� ��þ ej

�� � ejþ1
� ��� �

; (1)

where h�J is the excitonic coupling between the neighboring
sites, e is the excitation energy of the sites and lastly, |eji is the
many-body wavefunction with just the jth site excited. In terms
of the one-body ground, |fg

j i, and excited, |fe
j i, wavefunctions,

ej
�� � ¼ fe

j

��� E
�
Q

kaj f
g
k

�� �
.

Typically, for simulations of extended systems, DMRG and
DMRG-like methods proceed by decomposing the system along
the spatial dimension. By exploiting the lack of correlation
between distant sites, the resulting matrix product state (MPS)
can be an extremely compact and efficient representation of the
system. The reduced density matrix after the nth time step can
expressed in the form of an MPS as follows

~r S�n ; nDt
� �

¼
X
að j;nÞf g

A
s�
1;n
að1;nÞA

s�
2;n
að1;nÞ ;að2;nÞ � � �A

s�
P;n
aðP�1;nÞ ; (2)

where aj,n is the index connecting the jth site at time-step n to
the ( j + 1) th site at the same time step. Fig. 1 gives a graphical
representation of this structure. In this work, the forward–

backward state of the jth site at the nth time point is denoted
by s�j,n and the states of all the sites at this time step are
collectively represented by S�n . (Here, the forward–backward
state is a combination of the forward, bra, and backward, ket,
states of the density matrix.) When the density matrix is
represented as an MPS, the forward-backward propagator,
which evolves it in time, must be represented as a matrix
product operator (MPO). The forward–backward propagator
MPO corresponding to the Hamiltonian in eqn (1) can be
obtained using a second-order time-evolved block decimation
scheme.19

With this setup, it is possible to obtain the time-dynamics of
the isolated system through a series of MPO-MPS applications.
However, often the individual sites interact with separate
dissipative environments. These environments can, under Gaussian
response theory, be mapped onto baths of Nosc harmonic oscillators
each, yielding the full system-environment Hamiltonian as:

Ĥ ¼ Ĥ0 þ
XP
j¼1

XNosc

l¼1

pjl
2

2mjl
þ 1

2
mjlojl

2 xjl �
cjl ŝj

mjlojl
2

	 
2

; (3)

where Ĥ0 is the Hamiltonian corresponding to the isolated extended
system with P units or particles, eqn (1). The lth harmonic oscillator
of the jth system unit interacts with it through the operator ŝj with a
strength of cjl. For excitonic applications, ŝj is defined as ŝj|f

e
j i = |fe

j i
and ŝj|f

g
j i = 0. The combination of a Frenkel system with vibrations

as in eqn (3) is often referred to as the Frenkel–Holstein model in the
literature. The frequencies and couplings of the baths are given in
terms of the spectral density,

J jðoÞ ¼
p
2

XNosc

l¼1

clj
2

mljolj
2
d o� olj

� �
: (4)

This can be related to the energy gap autocorrelation function,22,23

which can be approximated through classical trajectory-based
methods.24,25 These dissipative baths, most commonly, encode the
effects of the phonons on the excitonic dynamics.

In the presence of the dissipative environment, the time
evolution of the reduced density matrix can be described as

~r S�N ;NDt
� �

¼
X
S�
0

X
S�
1

� � �
X
S�
N�1

~r S�0 ; 0
� �

PS�
0
���S�

N
(5)

¼
X
S�
0

X
S�
1

� � �
X
S�
N�1

~rðS�0 ; 0ÞP
ð0Þ
S�
0
���S�

N

F S�n
� �
 �

: (6)

Here, Pð0Þ
S�
0
���S�

N

is the bare path amplitude tensor, which contains

the full information of the isolated system, and F is the Feynman–
Vernon influence functional,14 which depends on the temperature
and the spectral density, and encodes the system-environment
interaction. Lastly, PS�

0
���S�

N
is the path amplitude tensor, which

describes the system in the presence of the solvent. For the
problems with temperature gradients explored here, the bare path
amplitude tensor, being independent of temperature, does
not cause the difference in dynamics. The Feynman–Vernon
influence functional is the only thing that changes with the sites
because of the gradient. The system dynamics gets affected as a

Fig. 1 Schematic of a density matrix of an extended system represented
as an MPS.
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consequence. Since the dimensionality of the path amplitude
tensor grows exponentially with the number of particles and time
steps, it can only be explicitly constructed in a very small number
of cases.

MS-TNPI19 avoids this exponential scaling by performing a
spatial decomposition of the bare system and combining it
with a temporal decomposition of the influence functional to
produce a compact two-dimensional tensor network represen-
tation of the path amplitude tensor,

PS�
0
���S�

N
¼
X
bnf g

T
S�
0

b0
� � �TS�n

bn�1;bn
� � �TS�

N
bN�1

: (7)

Here, bn is the index connecting the tensors at time-point n to
the ones at n + 1, and each T is a matrix product representation
decomposed along the site axis. The resulting two-dimensional
tensor network is shown in Fig. 2(a). Each of the columns
roughly contains the state of the full system at any point of
time. Therefore, when contracting the network along the col-
umns, we get the full reduced density matrix corresponding to
the extended system. Naı̈vely speaking, the number of columns
in the MS-TNPI network corresponds to the total length of the
simulation. However, an iterative procedure can be employed
that effectively reduces the number columns to the length of
the memory induced by the baths. The rows represent the path
amplitude corresponding to the individual sites or units of the
system. This allows both the incorporation of the Feynman–
Vernon influence functional in a transparent manner as MPOs
acting on the rows as shown in Fig. 2(b) and the truncation of
memory.

Numerical examples

As our first example, we consider a P = 31 site system with h�J = 1
and e = 100. (The sites are numbered from 1 to 31.) We are
interested in the effects of thermal inhomogeneities and not
the differences in the structure of the vibronic couplings.
Therefore, in this work, the spectral densities, which characterize
the interaction between the vibrational bath and the electronic
system, are taken to be site independent. For the current example,
the spectral density is

J jðoÞ ¼ 2p�hxo exp �o
oc

	 

; (8)

where oc = 8J is the cutoff frequency and the dimensional Kondo
parameter, x = 0.075. We start the discussion by considering the
dynamics of the exciton under a constant temperature of kBT = h�J.
Consider an initial state where the middle monomer is excited,
~r(0) = |e16ihe16|. The excited state population dynamics, %Pexc

j (t) =
hfe

j |~r(t)|fe
j i, is demonstrated in Fig. 3. Because the middle unit is

initially excited, the dynamics is completely symmetric, that is the
populations of the units equidistant from the edges are identical.
(A short explanation of the notation used: we use %Pexc when
denoting the dynamics in absence of a temperature gradient.
When a temperature gradient is applied, we refer to it as Pexc.)

Now, consider applying a temperature gradient of 0.05h�J/kB

with an average temperature of kB %T = h�J. The temperature is
lowest at the bottom end where the units have lower numbers,
and rises as we move up. The application of this temperature
gradient breaks the symmetry discussed in the previous para-
graph. To explore this deviation numerically, we introduce the
following measure:

dPexc
j ðtÞ ¼

Pexc
j ðtÞ � �P

exc
j ðtÞ

�P
exc
j ðtÞ

� 100: (9)

Here, %Pexc is the same dynamics as discussed in the previous
paragraph and shown in Fig. 3. The deviation from the zero-
gradient dynamics is shown for this particular case in Fig. 4.
For the linear ramp considered, the transport process seems to
preferentially move the exciton to the colder monomers.
The deviations are quite significant with an upper limit of
around�75%. (These calculations took roughly 2.5 hours on an
Intel Xeon Gold CPU with 32 cores.)

As a more realistic example of exciton transfer, consider a
chain of 31 bacteriochlorophyll (BChl) units. The intermono-
mer electronic coupling, h�J, is taken to be 156.5 cm�1 and the
excitation energy of a BChl unit, e, is taken to be 12 390 cm�1.
The local spectral density was calculated from the molecular
dynamics-based (MD) bath response function, CMD(t), reported
in ref. 26 using the following relation:

J jðoÞ ¼
�hobMD

2

ð1
0

CMDðtÞ cosðotÞdt: (10)

Fig. 2 Schematic of MS-TNPI tensor network. (Schematics reproduced
from ref. 20.)

Fig. 3 Unit dependent excited state population, %Pexc
j (t), when no tem-

perature gradient is applied.
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The resultant spectral density is shown in Fig. 5. (Note that
the inverse temperature used here, bMD, corresponds to MD
simulation setup. In addition, the relation between the spectral
density and the MD correlation function used here, eqn (10),
and the one reported in ref. 26 are different. It has been shown
that eqn (10) is better at preserving the temperature invariance
of the spectral density.27)

The spectral density, eqn (10), is independent of the tem-
perature of the path integral simulations done here. So, just as
in the previous example, all the monomer units have identical
spectral densities here as well. We want to understand the
changes brought about in the dynamics through an external
temperature gradient of 10 K per unit. The average temperature
of the chain is held at 300 K. Fig. 6 shows the difference caused
in the excitonic population dynamics by the externally imposed
temperature gradient. Note that despite having a structured
spectral density, the trends here are identical to the model
example, Fig. 4. Even in this case, population preferentially
moves towards the colder end of the chain.

Till now, we have considered the impact of a linear external
temperature gradient on the dynamics. To use temperature
differences as a parameter for quantum control, one would like

to impose non-trivial temperature profiles as well. For the
model Ohmic bath, eqn (8), consider two such non-linear
temperature profiles:

(1) The temperature rises as a Gaussian at the point where
the initial excitation is located (16th site for instance). This will
be called the heating profile.

(2) The temperature decreases as an inverted Gaussian at the
point where the initial excitation is located. This will be called
the cooling profile.
These are shown in Fig. 7. Temperature profile (1), the heating
profile, is closely related to what would happen if a laser was
used to cause the initial excitation. In this case, along with the
electronic excitation, heat would also be dumped into the
vibrational degrees of freedom of the middle and nearby
monomers. The deviations in excitonic population corres-
ponding to these two temperature profiles is shown in Fig. 8.

The drop in temperature associated with the cooling profile
seems to force a faster excitonic transfer away from the cold
middle site. The reverse happens when the initially excited site
is at a higher temperature. The heating profile allows the
middle monomers to hold on to the exciton longer than when
no temperature profile is imposed. It is interesting to note that
this behavior seems to go against the movement of excitons to
colder regions in presence of linear temperature ramps that we

Fig. 4 Plot of dPexc
j (t) in presence of a temperature gradient of 0.05h�J/kB

per site.

Fig. 5 Spectral density describing the thermal environment of the bac-
teriochlorophyll molecules. It was obtained by using eqn (10) on the bath
response function reported in ref. 26.

Fig. 6 Plot of dPexc
j (t) for a chain of BChl molecules caused by an external

temperature gradient of 10 K per unit.

Fig. 7 Different temperature profiles.
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previously demonstrated. One may hypothesize that the second
derivative of the temperature profile with the units is what
affects the change. Further research investigating this phenom-
enon will be conducted in the future.

Concluding remarks

We have demonstrated a noticeable change in the quantum
transport of excitons in the presence of an externally imposed
temperature profile. When the temperature increases linearly
with the units, the excitonic population seems to travel prefer-
entially to the colder end of the chain. This trend is consistent
between model spectral densities and structured ones derived
from molecular dynamics simulations. Thus, the hope is that
one may be able to control aspects of the transport using the
temperature profile. We have demonstrated that when we
locally heat or cool the Frenkel chain, the rate of transfer of
the exciton changes. Future work would look into the impact of
the shape of the temperature profile. Is it enough to heat
or cool particular parts of the chain or does the exact function
mapping the units to their corresponding temperature also
matter? Investigations on the effect of temperature differences
on spectra and other properties will also be undertaken in the
future. We noted how the behavior of the exciton changes from
a constant gradient temperature profile to a non-constant
gradient temperature profile. This has potential for being
exploited in vibrationally trapping excitons in certain regions
of space. This feature would also be an important aspect of
our explorations in the future. In addition, it has recently been
shown that the presence of phononic scattering in the closely-
related XXZ spin chain makes transport diffusive.21 We are also
going to explore of the effect of temperature gradients on
diffusion constants for the quantum transport. Ultimately,
what has been shown in this communication seems to indicate
that temperature might be a useable control for quantum
dynamics. Further exploration to this end would be done in
the future.
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3 U. Schollwöck, Rev. Mod. Phys., 2005, 77, 259–315.
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