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Abstract

Quantum-classical formulations of reactive flux correlation functions require the
partial Weyl-Wigner transform of the thermalized flux operator, whose numerical
evaluation is unstable because of phase cancelation. In a recent paper, we introduced
a non-equilibrium formulation which eliminates the need for construction of this dis-
tribution and which gives the reaction rate along with the time evolution of the reac-
tant population. In this work, we describe a near-equilibrium formulation of the

reactive flux, which accounts for important thermal correlations between the quan-
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Weyl-Wigner transform. By minimizing early-time transients, the near-equilibrium
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formulation leads to an earlier onset of the plateau regime, allowing determination of
the reaction rate from short-time dynamics. In combination with the quantum-
classical path integral methodology, the near-equilibrium formulation offers an accu-
rate and efficient approach for determining reaction rate constants in condensed
phase environments. The near-equilibrium formulation may also be combined with a

variety of approximate quantum-classical propagation methods.
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1 | INTRODUCTION

Chemical reactions occur on timescales that span many orders of magnitude. While classical transition state theory [1, 2] offers a simple estimate
of reaction rates for processes described by a potential barrier, large deviations are not uncommon. These are primarily associated with tunneling
and other ubiquitous quantum mechanical effects, such as zero-point energy (which effectively lowers potential barriers), although classical
effects responsible for the Kramers turnover [3-5] can also lead to significant deviations. In the case of nonadiabatic reactions, additional
considerations come into play [6, 7]. A large body of work has been devoted to reaction rate theory and to the development of methods for
calculating rates, and several excellent reviews are available [8-10].

Direct simulation of reactive processes can be prohibitive, even with the use of inexpensive classical trajectories, when the transformation of
reactants to products is slow. Reactive flux formulations [8, 9, 11-23] circumvent this difficulty by following the dynamics only up to the relatively
short “plateau” time. This time is reached once intra-well processes have settled and the reactant population has entered its slow exponential decay.

A variety of approaches have been pursued for calculating quantum mechanical reaction rates. In the case of condensed phase reactive pro-
cesses and with the exception of system-harmonic bath models [24] (for which numerically exact treatments have been available since the 1990s
[25]), reaction rate calculations are based on a variety of approximations. Formulations based on Feynman's path integral formulation of quantum
statistical mechanics [26], in particular the dynamics of the centroid [27, 28] or the beads [29-31] of the path integral necklace (in the
quantum-classical isomorphism [32]), have found many applications to a variety of processes.
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A distinct approach involves the use of mixed quantum-classical treatments. Such treatments are easily justified in many reaction occurring in
biological processes, where the majority of degrees of freedom are described by classical force fields, but can also provide accurate results in
many other situations. This is so because strictly quantum mechanical effects arising from phase interference are effectively washed out in con-
densed phase processes, such that zero-point energy is the main quantum effect that needs to be accounted for in the description of the solvent
atoms. Provided that quantization of the solvent equilibrium phase space density [2] is possible, all important quantum mechanical effects can be
captured through an accurate treatment of the system coordinate.

Traditionally, quantum-classical methods invoke various prescriptions for calculating the influence of the quantum system on the classical
trajectory of the solvent degrees of freedom. Ehrenfest's mean field prescription [33] is largely inadequate and often leads to unphysical results
[34]. Surface hopping [35, 36] algorithms have found wide application, but cannot naturally account for decoherence effects induced by the
solvent [37]. Rigorous quantum-classical formulations have emerged only recently. Such an approach is offered by the quantum-classical
Liouville equation [38, 39], in particular its momentum-jump formulation [40, 41], although the computational demands of the method increase
exponentially with propagation time. The other rigorous quantum-classical formulation is the quantum-classical path integral [42-44] (QCPI),
which circumvents the Ehrenfest dilemma by replacing delocalized wavefunctions by local quantum paths, thus allowing an unambiguous
determination of the force on the classical particles which is free of assumptions. The QCPI methodology has been shown to converge with
modest effort in situations characteristic of charge or proton transfer reactions. An alternative to quantum-classical methods is offered by the
Meyer-Miller mapping Hamiltonian [45, 46] bypasses the quantum-classical dilemma by replacing the quantum states by continuous degrees
of freedom, which can subsequently be treated (along with the coordinates of the nuclei) by classical trajectory [47, 48] or imaginary-time path
integral [49, 50] methods.

In this paper, we focus on the evaluation of reaction rates through quantum-classical methods. An important obstacle in this direction is the
need for constructing the partial Wigner transform of the thermalized flux operator, which is necessary for a classical trajectory treatment of the
solvent degrees of freedom. Numerical evaluation of the Wigner distribution [2] in multidimensional space is impractical because of the oscillating
phase in the Fourier integral, which leads to the so-called “sign problem.” Several schemes have been proposed for constructing the Wigner
distribution. These include local [51] or variationally optimized [52] Gaussian wavepacket approaches, and the thermal Gaussian approximation
[53, 54] (which employ frozen Gaussian dynamics [55] in imaginary time), along with extensions that capture quantum corrections [56]. We
recently introduced [57, 58] a simple, trajectory-based approximate procedure that makes use of the classical adiabatic theorem to slowly convert
the Wigner density of a harmonic reference system to that of the target Hamiltonian. We also described a path integral representation of the
Wigner density which exploits the coherent state representation to circumvent the numerical issues associated with the oscillatory Fourier phase
[59]. Other recent work [60] has used the quasi-adiabatic propagator path integral methodology [61] to obtain the Wigner distribution of the bath
in case of a system interacting with a bath of independent harmonic oscillators. However, these methods are not directly applicable to the present
situation, where the target is the partial Weyl-Wigner transform with the system remaining in coordinate space.

In recent work [62] we circumvented this difficulty by introducing a non-equilibrium flux formulation which employs a simple initial condition
that is easy to construct. As an additional benefit, the non-equilibrium formulation automatically generates the reactant population through the
plateau time, offering a unified approach to the dynamics of slow as well as fast reactive processes. In the present paper, we propose a near-
equilibrium formulation of the reactive flux, which reaches the plateau time earlier compared to the non-equilibrium method. In situations where
accurate propagation is costly or impractical, the present approach offers an accurate, yet practical way of calculating reaction rates. The near-
equilibrium formulation is based on a modification of the Weyl-Wigner transform of the thermalized flux operator, which is amenable to a path
integral treatment and which is ideally suited to the QCPI treatment of the dynamics.

In Section 2 we describe the near-equilibrium formulation and the imaginary-time path integral representation of the thermalized flux. The
QCPI implementation of the near-equilibrium flux correlation function is described in Section 3. In Section 4 the method is illustrated with applica-

tion to dissipative two-level systems in various regimes. Some concluding remarks are given in Section 5.

2 | NEAR-EQUILIBRIUM FLUX FORMULATION

We consider a quantum system described by a coordinate s, in contact with a large number of degrees of freedom with coordinates and momenta

g,p, which comprise the system's environment (or “solvent”). The total Hamiltonian is given by
H = Ho(g, '35) + Henv(g;q, 'S) = FIO + Tenv(f)) + Venv(éya); (21)

where Teny is the solvent kinetic energy operator, and Ve, is the potential function that describes the interaction among solvent degrees of free-
dom and between solvent and system.
Reactive flux formulations are based on a separation of time scales, that is, the assumption that all non-reactive processes in the reactant

potential well occur on a time scale much shorter than the time scale for completion of the reaction. This is often the case, as typical potential
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barriers separating reactants and products are considerably larger than the thermal energy. Miller has shown [16, 17] that the (forward) rate con-
stant for reactive processes in bimolecular collisions in the gas phase is given by the expression

k. = limReCys(t), (2.2)

—00

where

Cis(t) = Zg ' Tr(e~t/ne-MHeHt /g ), (2.3)

is the “flux-side” correlation function. Here g = 1/kgT, Zy is the reactant partition function, hg is an operator that projects on the coordinates of
the reactants, and

[H,HR} . (2.4)

F is the flux operator. Note that Flem, commutes with hg, thus the flux operator acts only on the space of the system. For reactive processes
in the condensed phase, Equation (2.2) is modified to

k. =ReCi(t) (2.5)

[
where tyjateau is the “plateau time,” which signifies the end of early-time transients and the beginning of exponential decay for the reactant popu-
lation. Assuming a separation of time scales, the plateau time occurs relatively early in the reactant-to-product transformation, thus kitpjateau < 1.
On a time scale much longer than tp.eau, the correlation function decays exponentially.

A variety of approaches may be employed to evaluate Equation (2.5). The present paper focuses on the use of quantum-classical methods. In
such treatments the initial condition must be specified in terms of coordinate space for the quantum system and phase space variables for the
environment. Thus, one needs to obtain the partial Weyl-Wigner transform [2, 63] of the operator e~PMF with respect to the degrees of freedom
comprising the system's environment,

W(s3,d0.Po) = (2ﬂh)’”Jd§<sg,qo + %é e MHE

55,CI0—%§>3_ip°'§/h- (2.6)

Evaluation of this integral by means of Monte Carlo methods [64] is problematic, because of the oscillatory character of the Fourier factor,
which leads to a sign problem.

To proceed, we take advantage of the invariance of the rate (in the exponential decay regime) with respect to details of the initial preparation
of the system and its environment. In a recent paper [62] we exploited this independence by replacing the full Boltzmann operator by that
corresponding to the solvent Hamiltonian. This procedure allowed the use of QCPI with a simple factorized initial condition corresponding to the
solvent equilibrated with respect to the reactants. While the non-equilibrium initial density causes some delay to the onset of the flux plateau, we
found that the plateau regime still occurs early on and thus is easily accessible to efficient dynamical treatments. In addition to obtaining the rate
constant, knowledge of the flux from the non-equilibrium initial density allows direct determination of the transient population dynamics, thus
providing a complete picture of the reactive process. In the present paper we propose the use of a near-equilibrium density which, while relatively
easy to construct, leads to less pronounced transients and thus to a faster onset of the plateau. We emphasize that as long as Onsager's hypothe-
sis is valid, both formulations produce the exact rate in condensed phase reactive processes.

The basic idea is to replace the exact Weyl-Wigner transform, Equation (2.6), by its product approximation,
Wo (S50, Po) = Ppos (55, 8o) Pmom (Po)- (27)

The position component is designed to give the exact coordinate distributions of the Weyl-Wigner function, that is,

Ppos (s(i,,qo) = JdPoW(Sév%:Po): (2.8)

while the momentum factor may satisfy an analogous relation, either exactly or approximately,
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Praom(Po) =~ JdQOW(S§:QO:P0) (2.9)

56’ orsg’
Using Equation (2.9) we obtain

_ 1] e
Poos (3.do) = (27h) ™" Jd€<55 o+ 58 e MF

1 )
%00~ §€> J dpoe 71" (2.10)

= (s ole ""F|sg o).
The position factor may be obtained from an imaginary-time path integral calculation. To this end, we express Equation (2.10) in discretized

path integral form [65]. Defining the imaginary-time step A = /M and employing a Trotter factorization, the high-temperature Boltzmann opera-
tor is expressed as

oD o= 38Flen o= ABHO g =38PFlen . o =30Veny = BFTeny = ABHo g =3 Ve, (2.11)
Thus the density matrix element in Equation (2.10) becomes

(so qO|e_ﬂH'E}55qO>

X R N N . ) N R 5 5 2.12
= (53 Qo|e ™1 Verv = 8Tens g=0Ho g =M Verw o= 88Teny o= 0o g =MVeny .. o= STen =0 g=3AMVern F |5 Y. (212)
Following the standard procedure, we obtain the discretized path integral representation of (Equation 2.6),
- s - —l 5 - H - T
(s dole™"'F|sg o) = stl"'JdSM—ide1"'quM—1e BaVen(55.0) (55 | =80 51 ) (go e~ |gy)
x e~ Ve (51.81) (5, | =300 ) (g [~ 2 Terv g ) e~ A Ven (52:82) . (2.13)

x e OVen(Su-1m-1) (5 4 ‘e—AﬂHOi_—‘Sa Yaw-1 |e—AﬁTenv |q0>e—%A/)‘Venv (55.%0)

The variables in the space of the solvent degrees of freedom form the beads of a closed imaginary-time path integral necklace. Each of these
beads interacts with the bead representing a path integral variable of the system coordinate. Since the system endpoints s; ,s5 are not necessarily
identical, the necklace is open in the space of the system. A graphical illustration of the path integral necklace is given in Figure 1 for a case of a
two-state system representing two diabatic potential surfaces.

In the general situation of a solvent described by anharmonic potentials functions, the integrals with respect to all path integral variables are
to be performed by Monte Carlo. Note that if the solvent is described by a classical force field, which implicitly accounts for zero-point energy
effects, one should not quantize the Boltzmann operator. The path integral expression of Equation (2.13) allows the use of different time slicing
for system and solvent degrees of freedom. The details are given in Section 2.1, following the discussion of the momentum component.

The exact momentum factor, that is, the integral of the Weyl-Wigner transform with respect to solvent coordinates, is harder to obtain
because of the oscillatory Fourier factor. However, knowledge of the precise form of the momentum component is not important for the purpose
of determining the plateau value of the reactive flux. A variety of procedures may be used, depending on the nature of the solvent interactions.

Below we describe procedures for the most common situations, along with the relevant adaptations of the coordinate factor, Equation (2.13):

FIGURE 1 Schematic illustration of the imaginary-time path
integral necklace, Equation (2.13), for the case of a two-state system.
The diabatic potential energy surfaces representing the reactant and
product states (see also Section 4) are shown as red and blue surfaces
in terms of two solvent coordinates q1, g». The beads are colored red
and blue to indicate the value of the system variable, which
determines whether a bead is on the reactant or product surface
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21 | Classical environment

If the solvent is described by classical force field, which captures some quantum mechanical effects, its Boltzmann factor should not be quantized.

In this case the path integral necklaces for the solvent degrees of freedom collapse to a point and Equation (2.13) should be replaced by

<55 q0|e—/ﬁ;lf:|sa CI0> - jdsl‘ .,J\dsMile_%A/}venv(Sg ,qo)<$g ‘e*A/fHo|Sl>e*Aﬁvenv(51,QO) 2.14)

« <51|e—A/ﬂ:lo|S2>_ . -(SM_1|e_A/}H°f-'|56 >e_%A/1venv(50_vq0)v

Since no integrals with respect to solvent coordinates are required, Equation (2.14) may be evaluated by sequential matrix multiplications

[66]. This procedure is simple and very efficient. In this case the momentum factor is given by the classical form,

- ~p o
Proom(P) = - E 2. 2.15
®) exp< =1 2mjpf > ( )

2.2 | Harmonic environment

If the Hamiltonian of the environment is quadratic, for example, if it describes a harmonic bath or a situation where a normal mode analysis is

meaningful, we use the harmonic Wigner momentum distribution

1z
tanhg e/ .2> . (2.16)

1
1 1 3
Prom(P) = 7 (m(,;jhcothiha)j/;) exp <— pr,
j ]

Evaluation of the position distribution may be done as in the general case Section 2.3. Alternatively, noting that in this case the system path
integral variables in Equation (2.13) enter in a Gaussian fashion, one may integrate out these variables analytically to obtain an influence functional
[67] that depends on the system path coordinates and the terminal bath coordinates qo. The remaining system variables may be integrated via

standard Monte Carlo methods, or (in the case of a two-state system with small values of M) through full quadrature.

2.3 | Anharmonic quantum environment

In this general situation, where the degrees of freedom comprising the system's environment are described by complex, anharmonic potential
functions, the position factor is given by Equation (2.13). All integrals can be routinely performed by standard path integral Monte Carlo [64]
methods.

There are various ways of obtaining a suitable momentum distribution in this general case. Perhaps the simplest approach is to assume a
Gaussian momentum distribution for each particle, obtaining the coefficients from the average kinetic energy of each degree of freedom. From

the harmonic oscillator model, one finds

ay3 i, 1
Pron(®) = () eXp('Zafpf>’af=2< 2y (217)
j=1 p;
Many algorithms are available for estimating the average kinetic energy and can be used to construct the momentum distribution.

3 | QUANTUM-CLASSICAL PATH INTEGRAL EVALUATION OF THE NEAR-
EQUILIBRIUM FLUX

We now describe the use of the QCPI methodology for calculating the near-equilibrium flux. The QCPI representation of Equation (2.3) is
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Crs(NAD) =Zz1 > JdqodpoW(Sé,qo,po)Q(qo,po,S§;5§ =R,NAt), (3.1)
s§ =R,P

where

Q(qo,Po,55 55, NAL) = Jd51~ . [dsM,1<s,T, |Urer(NAE; (N—1)At,do, Do) |Sy_1 )---
X (51 |Uret (At;0,00,P0)|sg (S5 |Uret (0; At,do,P0) |57 ) (3.2)
X (Sy_1|Urer (N— 1) At; NAL, G, Do) |s'N>e"‘”(q°vPO'5§v~v5ﬁ)/",

is the quantum influence function [42, 43]. Here ¢ is the QCPI phase, which is evaluated from the action difference between forward and back-
ward system paths along the particular solvent trajectory q(t), p(t) that is obtained from the initial phase space coordinates qo, po on a sequence of
reactant-product potentials specified by the given forward-backward system path s3,...,s5;, and Uvef is the system propagator along a reference
trajectory of the solvent [68].

The QCPI formulation employs energy-filtered propagators on a discrete system coordinate grid [61]. This representation allows the quadra-
ture evaluation of the path integral with respect to system path variables, which circumvents the sign problem. Evaluation of the solvent factors is
possible through a discrete variable representation of the path integral [69], which has the form of Equation (3.2) with all system integrals replaced
by discrete sums,

Q(do.Po, 5535 NAE) = > "+--> (55 |Urer(NAL; (N— 1) At, 0, Po) sy _1 )+~

ST Suea
X (51 |Uret(At;0,00,P0) |5g (S5 |Uret (0; At, 0o, Po) |1 )
X {sy_1|Ures((N— 1)At;NAt,qO,po)|s;v>e“/’(q°v"0~53*---'5§)/",

where |s;) are the potential-optimized DVR states [70] and s, the corresponding eigenvalues.

Using the simpler form of the Wigner function and its imaginary-time path integral representation, Equation (3.2) becomes

Crs(NAL) =Z3" Z JdQOJdDoZ'"meom(Po)Jdﬁh"'JdQM-@_%Mvm(sg'%)

s =RP St SM-1
X <55 ‘e_A/iH0|Sl><q0‘e_A/}Tenv ‘q1>e_A/ivenv(51vql)<51|e_AﬁH0|S2><q1‘e_A/}Tenv 92) (3.4)
Xe_AﬂVEnv(SZvQZ)_,,<SM_1|e_AﬂH0,A__|56><qM_1‘e_AﬂTsnv|q0>e*%A/ivenv(55YQO)

X Q(0o0,Po, 55,5y = R;NAL)

The imaginary-time system propagators are evaluated exactly from the eigenstates of the system Hamiltonian [61], and the high-temperature
kinetic energy Boltzmann matrix elements are given by the standard expression

N n m; (1 —a)
<qk‘e—A/}Tenv‘qk+1> = H /zﬂhéAﬁe 2y Ber1 =) ) (3.5)
j=1

The integrals with respect to all solvent variables, that is, the trajectory initial conditions qo, po and the imaginary time path integral variables

d1, ..., dm, as well as the sums with respect to the imaginary-time system variables sq, ..., sp — 1 are performed by Monte Carlo. The un-normalized
sampling function is the integrand of Equation (2.13) multiplied by the momentum factor P.,om(Po). Normalization is achieved by dividing the
Monte Carlo average by that obtained by replacing the quantum influence function by unity. Notice that the reactant partition function cancels
out in this process and thus does not need to be evaluated.

The quantum influence function, Equation (3.2), is computed using the iterative QCPI methodology, which maintains a constant number of
classical trajectories [43]. In the common case of an initial density matrix that is diagonal in the system basis, use of a dynamically consistent state
hopping (DCSH) procedure [71] leads to accelerated convergence. However, in the present case where the system initial condition includes off-
diagonal components implementation of the DCSH procedure is not straightforward, so we revert to the original, random choice of branching

trajectories.
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4 | NUMERICAL EXAMPLES

We illustrate the near-equilibrium flux formulation on a model system of two states, which represent the reactants “R” and products “P” of a

charge transfer reaction or a double well potential at low temperatures. The system operator is expressed as
5= [R)(R|=|P)(P], (4.1)
and the Hamiltonian describing the system has the general form
Ho = =Q(IR) (P + |P)(R|) +&(IR) (R| = P)(P|). (4.2)

In this case the projector on reactant space has the form hg = |R)(R| is an operator that projects on reactants (labeled “R”), and the flux opera-
toris

F=iQ(IR)(P|~[P)(R]). (4-3)

The Hamiltonian of the environment is described by a harmonic bath,

1 . .
-, Vem,=§mjw< iz—qsqj. (4.4)

The frequencies and the couplings of the bath are collectively characterized by a spectral density function [72]. Here we use the Ohmic form
with an exponential cutoff,

J(a)) = %nfhwe"“’/“", (45)

where ¢ is the Kondo parameter and w. is the cutoff frequency.

We choose a symmetric system (e = 0) with the parameters used by Topaler and Makri [73], where the two-level system (TLS) coupling corre-
sponds to a tunneling splitting 24Q = 0.00105 cm™! and the cutoff frequency is o, = 500 cm™1. These parameters are characteristic of many pro-
ton transfer reactions. The small tunneling splitting is a result of a high potential barrier, while the frequencies of the bath degrees of freedom are
much higher, leading to a clean separation of time scales and a relatively short plateau time.

The classical trajectories employed in the QCPI methodology require discrete bath degrees of freedom. For this purpose the harmonic bath
was discretized into 300 modes using the logarithmic discretization scheme [74, 75] With @max = 4w.. We used 3 x 10° Monte Carlo points per
bath mode to shrink the statistical error in the correlation function to values smaller than the marker size in the figures.

(A)1210’5 (B) 310° (©) 1.4 10°

s 1.210°

110° 2510°

v .
e ® ® 0 o o o
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810° 210° .
a o] ] 5
= = = 8w
= 610° =z 1510° e
€ © 7
& 1 g 6w
410° 110°
4107
o 7
210 510 2107
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FIGURE 2 Comparison of the non-equilibrium flux method [62] and the present near-equilibrium flux method at room temperature and three
values of the system-bath coupling. Solid line: Non-equilibrium flux. Red markers: Near-equilibrium flux. Left (or top): £ = 0.1. Middle: & = 0.5.
Right (or bottom): £ = 1.5
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Figure 2 shows the time evolution of the reactive flux at T = 300 K for three values of the system-bath coupling strength, & = 0.1, 0.5,
and 1.5. Results obtained with the current near-equilibrium flux approach, where the time evolution was obtained through the QCPI meth-
odology, are compared to those obtained through the simpler non-equilibrium flux scheme [62] with the propagation of the initial density
was obtained with the quasiadiabatic propagator path integral [76, 77] (QuAPI) algorithm. At small values of the system-bath coupling the
two side-flux correlation functions do not exhibit notable differences. However, as the coupling is increased, transients in the dynamics
become significant. As is seen from Figure 2, these transients are considerably less pronounced in the near-equilibrium flux, and this corre-
lation function plateaus earlier in the cases where the bath is coupled strongly to the system. As expected, the long-time rates obtained
by the two methods are identical. The earlier plateau attained by the near-equilibrium flux allows the rate to be obtained from shorter time
propagation.

In Figure 3 we show the rate as a function of inverse temperature for the three values of system-bath coupling. The results obtained with the
two methods are in quantitative agreement and practically identical to those obtained by Topaler and Makri.

5 | CONCLUDING REMARKS

We have described a near-equilibrium formulation of reactive flux correlation functions suitable for quantum-classical calculations. Rather than
constructing the required partial Weyl-Wigner transform through numerically unstable multidimensional integration procedures, we use a
factorized approximation to this distribution which is amenable to accurate evaluation by robust imaginary-time path integral methods. This distri-
bution accounts for the entanglement of system and solvent and is much closer to the full Weyl-Wigner transform of the thermalized flux opera-
tor compared to the analogous distribution employed in the non-equilibrium rate formulation. As a result, initial transients die out more rapidly
and the plateau regime is reached faster. This advantage was illustrated clearly through calculations of a model two-state system interacting with
a dissipative bath over a range of temperatures and system-bath coupling strength.

Clearly, the gains achieved through the faster emergence of the plateau regime should be weighed against the additional complexity and cost
associated with the imaginary-time path integral representation of the Boltzmann operator, as well as the determination of kinetic energy factors
required to construct an accurate momentum factor in the most general situation. In many situations where iterative QCPI or QUAPI (and its pow-
erful small-matrix path integral decomposition [78, 79]) algorithms are viable, the non-equilibrium formulation offers the preferred approach.
However, in more demanding situations where long-time propagation is problematic, as in cases of very long solvent-induced memory, the pre-
sent near-equilibrium formulation can enable the determination of the rate constant without the need for iterative propagation outside of the
memory interval. Thus the present formulation can be valuable for characterizing reactive processes in condensed phase environments which are
not amenable to other rigorous treatments.

Last, we note that the near-equilibrium flux formulation with the path integral procedure developed in Section 2 may be used in connection
with less accurate quantum-classical propagation schemes. Since the accuracy of approximate methods typically degrades with propagation time,
the faster establishment of the plateau regime through the near-equilibrium flux formulation would increase the accuracy of the obtained rate
constant. Thus, the combination of the near-equilibrium flux formulation with commonly employed quantum-classical methods can lead to many

applications in chemical and biological systems.
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