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ABSTRACT: We use the quantum−classical path integral (QCPI) methodology to report
numerically exact, fully quantum mechanical results for the exciton-vibration dynamics in
the bacteriochlorophyll dimer, including all 50 coupled vibrational normal modes of each
bacteriochlorophyll explicitly with parameters obtained from spectroscopic Huang−Rhys
factors. We present a coordinate transformation that maps the dimer on a spin-Boson
Hamiltonian with a single collective bath. We consider two vibrational initial conditions
which correspond to a Franck−Condon excitation or to modes initially equilibrated with
the excited monomer. Our calculations reveal persistent, underdamped oscillations of the
electronic energy between the two pigments at room temperature. Static disorder leads to
additional damping, but the population dynamics remains oscillatory. The population
curves exhibit atypical, nonsmooth features that arise from the complexity of the
bacteriochlorophyll vibrational spectrum and which cannot be captured by simple
analytical spectral density functions.

I. INTRODUCTION

The fascinating details of photosynthesis1,2 continue to attract
intense theoretical and experimental efforts. Besides the desire
to fully understand the mechanistic pathways of this intriguing
process, much of this work is driven by technological interest,
namely, the prospect of mimicking nature to design highly
efficient energy harvest and storage devices.
In particular, the specifics of excitation energy transfer

(EET) following the absorption of a photon by the light
harvesting pigment−protein complexes of plants and photo-
synthetic bacteria continue to pose a number of questions. At
the central focus of current investigations is the interpigment
energy transfer dynamics in the B850 ring of the light
harvesting complex II, and also in the Fenna−Matthews−
Olson (FMO) complex.3,4 In purple bacteria, the former
(LH2 complex) consists of 16 or 18 dimerized bacterio-
chlorophyll (BChl) a units, which are strongly coupled to
their nearest neighbors. In the perfectly symmetric ring, the
electronic eigenstates are coherently delocalized among all
dimers. Static disorder from the ring’s environment introduces
a variation of the site energies. If strong, this asymmetry can
lead to partially or fully localized eigenstates. The FMO
complex is a trimer composed of seven BChl molecules. The
near-unity quantum yield of the energy transfer process has
prompted much discussion regarding the nature of EET in
these systems.
The optical and vibronic properties of individual BChl

molecules and of light harvesting complexes have been studied

extensively using absorption/emission, spectral hole burning,
fluorescence line narrowing, resonant Raman, and time-
resolved techniques.5−13 Experimental studies of the light
harvesting BChl aggregates have reported intriguing patterns.
In the late 1990s, fluerescence anisotropy experiments
reported quantum beating in FMO.14 In recent years, time-
resolved two-dimensional spectroscopic techniques15,16 have
revealed long-lived oscillatory patterns in FMO and LH2
complexes.17,18 The origin of these oscillations continues to be
hotly debated.19−27

Theoretical studies of EET in light harvesting com-
plexes13,19−22,26,28−41 have focused on obtaining electroning
coupling parameters and calculating population evolution or
nonlinear spectra through third-order response functions42 in
model Hamiltonians. The majority of the time-dependent
calculations employ a tight-binding Hamiltonian describing
the singly excited BChl electronic states that participate in the
energy transfer process, while the vibrational modes of the
chromophores and surrounding medium are typically included
as a harmonic bath characterized by a model spectral density.
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In the past, a majority of simulations on FMO or LH2
aggregates have focused on investigating the behaviors
resulting from various parameter choices.
However, even with the harmonic bath simplification,

accurate treatment of quantum dynamical evolution is all but
straightforward. Beyond perturbative and Markovian master
equation treatments,43,44 simulations of system−bath dynam-
ics typically follow one of two avenues. The first is based on
the Meyer−Miller mapping Hamiltonian approach,45,46 which
replaces the discrete electronic states by continuous degrees of
freedom. This approach allows a unified treatment of the
electronic and nuclear coordinates via classical trajectories
within linearized semiclassical initial value methods.47 The
second avenue retains the discrete nature of the electronic
states and treats the harmonic bath degrees of freedom via
real-time path integral methods or hierarchical equations of
motion. The latter approach48 is restricted to a model spectral
density of the Drude form, which represents a Brownian
oscillator and thus is unable to treat the complex spectral
characteristics of the chlorophyll vibrations.
The path integral formulation of time-dependent quantum

mechanics49,50 offers an elegant and intuitive approach, which
is ideally suited to system−bath Hamiltonians.51 This is so
because the contributions from a harmonic bath to the
reduced density matrix of the system can be integrated out
exactly within the path integral framework, giving rise to the
Feynman−Vernon influence functional.52 The quasiadiabatic
propagator path integral (QuAPI) methodology53−55 is a
numerically exact algorithm that can treat baths of arbitrary
spectral densities. It involves an iterative algorithm which
treats explicitly only the system path segments within the
bath-induced memory length, leading to linear scaling with the
number of time steps. However, the path array that spans the
memory length can become very large when multistate
systems are involved or if the memory is very long. A number
of techniques have been developed56−61 for reducing the size
of this array, and the resulting size reduction can be dramatic
in some regimes. In the incoherent regime (i.e., at high
temperature and with strong system−bath coupling), the blip
decomposition62,63 offers exponential acceleration of the path
sum, offering an efficient approach in situations of very long
memory. Most recently, it was shown that the path integral
variables can be disentangled even within the memory length,
leading to a small matrix path integral64 (SMatPI) algorithm
which requires storage of matrices whose size is that of the
bare system. As a result, the SMatPI decomposition allows
fully quantum mechanical calculations in systems with
multiple states.
Recent efforts have led to the development of algorithms

suitable for simulating processes in anharmonic media. The
mixed quantum−classical Liouville equation,65,66 in particular,
its momentum-jump formulation,67,68 is a rigorous approach,
but the computational demands of the method increase
exponentially with propagation time. Unlike quantum−
classical methods based on wave functions, which involve ad
hoc assumptions dictated by the need to correct the
shortcomings of the Ehrenfest mean field model,69 the path
integral representation allows a consistent treatment of a
discrete quantum system and the classical degrees of freedom
that constitute its environment. This is a consequence of the
local, trajectory-like nature of quantum paths, which allows
the treatment of the interaction between quantum and
classical degrees of freedom without approximation and in

full atomistic detail. The quantum−classical path integral70−72

(QCPI) methodology offers a rigorous formulation that
correctly captures the decoherence induced by the classical
degrees of freedom through destructive interference of
quantum−semiclassical phase factors. The algorithm scales
linearly with propagation length and has been shown to be
practical for simulating nonadiabatic processes in solution73

without ad hoc assumptions or adjustable parameters. Last, the
modular decomposition of the path integral74,75 offers linear
scaling with system size in extended systems characterized by
a one-dimensional topology.
The QCPI expression becomes exact in the case of a

harmonic bath and, thus, offers yet another alternative to
influence functional-based methods. Because the classical
component of the bath-induced memory is captured automati-
cally in the QCPI propagator,76 the algorithm needs to
account only for the residual quantum memory effects, which
are much weaker. For this reason, the QCPI methodology
converges faster, thus allowing simulations in more challeng-
ing regimes.
The EET dynamics of biological antenna complexes

involves electronic and vibrational motions of comparable
time scales, couplings of intermediate strength, and vibrational
modes that induce long memory. As a result, a simulation of
the time evolution with the true molecular parameters that
characterize these systems faces serious challenges. In this
work, we report QCPI simulations of the energy transfer
dynamics in BChl dimers, including the normal-mode
vibrations of each unit with highly accurate parameters
obtained from spectroscopic Huang−Rhys factors that have
been obtained from Qy fluorescence emission spectra of
Rhodobacter sphaeroides using difference fluorescence line
narrowing.13

In Section II, we describe the BChl dimer Hamiltonian.
Starting from the ground and excited states of a single BChl,
which are expressed in terms of the normal-mode coordinates
with parameters given in terms of Huang−Rhys factors, we
perform a transformation that brings the dimer to the
conventional spin-boson form. In Section III, we discuss
two possible initial conditions for the vibrational mode, and
describe its transformation to the new coordinates. In Section
IV, we extend the description to include the effects of static
disorder mimicking a sluggish protein environment. An
overview of the QCPI algorithm, along with the various
parameters we consider, is given in Section V. The results of
our simulations are presented and discussed in Section VI.
Section VII concludes with a discussion and additional
remarks.

II. CHLOROPHYLL DIMER HAMILTONIAN
Each BChl pigment is modeled in terms of two electronic
states |0⟩ and |1⟩ describing the S0 → S1 transition that
corresponds to the Qy band. Thus, the electronic Hamiltonian
for a single BChl molecule is E0|0⟩⟨0|+E1|1⟩⟨1|, where E0, E1
are the electronic eigenvalues. When vibrational degrees of
freedom are considered, the Hamiltonian for BChl α becomes

̂ = + ̂ | ⟩⟨ | + + ̂ | ⟩⟨ |α α α α α α α α αH E h E h( ) 0 0 ( ) 1 10 0,vib 1 1,vib (2.1)

where identity operators in the electronic and vibrational
subspaces have been omitted for notational simplicity. Within
the normal-mode approximation, the vibrational Hamiltonians
h0,vib
α and h1,vib

α are given by quadratic forms. If the minimum
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energy geometry of the ground state is set to zero, the
vibrational Hamiltonian has the usual quadratic form

∑ ω̂ =
̂

+ ̂
α

α
α

=

h
p

m
m q

( )

2
1
2

( )
j

n
j

j j0,vib
1

2
2 2

(2.2)

where m = 1 and qj
α, pj

α denote the normal-mode coordinates
and momenta of monomer α. The ground and excited state
geometries are very similar, leading to very similar normal-
mode frequencies on the two electronic states and a very small
Duschinskin rotation,13 which typically is neglected. Thus, the
excited state Hamiltonian has the form

∑ ω

ω ω

̂ =
̂

+ ̂ −

= ̂ − ̂ +

α
α

α

α α

=
h

p

m
m q d

h m d q m d

( )

2
1
2

( )

1
2

j

n
j

j j j

j j j j j

1,vib
1

2
2 2

0,vib
2 2 2

(2.3)

While each BChl pigment has it own vibrational
coordinates, the normal-mode frequencies ωj and displace-
ments dj are the same for both BChl molecules. Accurate
parameters for the BChl vibrational modes of Rhodobacter
sphaeroides have been determined from Qy fluorescence
emission spectra.13 The displacement distances dj of the n =
50 normal modes that have non-negligible couplings13 are
related to the Huang−Rhys factors

ω
=

ℏ
D

m
d

2j
j

j
2

(2.4)

Consider a BChl dimer consisting of two monomers,
labeled A and B. Energy transfer in molecular aggregates77 is
often conveniently described by the well-known Frenkel
exciton Hamiltonian,78

̂ = ̂ + ̂ + ̂H H H VAB A B AB (2.5)

Here the two monomers are coupled via the term

̂ = − | ⟩⟨ | + | ⟩⟨ |V J( 0 1 1 0 1 0 0 1 )
AB A B A B A B A B

(2.6)

where J > 0 is the exciton coupling parameter.
Upon simplifying, the Hamiltonian can be written as a sum

of zero-excitation, single-excitation, and double-excitation
terms. In fact, these subspaces are completely uncoupled
from each other. At ordinary light intensities, it is sufficient to
restrict attention to the single-excitation Frenkel subspace,
whose Hamiltonian is

̂ = + ̂ + + ̂ | ⟩⟨ |

+ + ̂ + + ̂ | ⟩⟨ |

− | ⟩⟨ | + | ⟩⟨ |

H E h E h

E h E h

J

( ) 1 0 1 0

( ) 0 1 0 1

( 0 1 1 0 1 0 0 1 )

single 1
A

1,vib
A

0
B

0,vib
B A B A B

0
A

0,vib
A

1
B

1,vib
B A B A B

A B A B A B A B
(2.7)

Defining the state with chlorophyll A excited as “right”, and
that with chlorophyll B excited as “left”, i.e.

| ⟩ ≡ | ⟩ | ⟩ ≡ | ⟩R L1 0 0 1A B A B
(2.8)

dropping additive constants and simplifying the expression,
the single excitation Hamiltonian becomes

∑ ω

̂ = ̂ + ̂ + ̂

− ̂ | ⟩⟨ | + ̂ | ⟩⟨ |
=

H H h h

m d q R R q L L( )
j

n

j j j j

single 0 0,vib
A

0,vib
B

1

2 A B

(2.9)

with

̂ = + | ⟩⟨ | + + | ⟩⟨ |

− | ⟩⟨ | + | ⟩⟨ |

= − | ⟩⟨ | + | ⟩⟨ |

H E E R R E E L L

J R L L R

J R L L R

( ) ( )

( )

( )

0 1
A

0
B

0
A

1
B

(2.10)

where the second equality follows by noting that for the
isolated dimer E0

A + E1
B = E1

A + E0
B, and by readjusting the zero

of energy.
Equation 2.9 is a Hamiltonian for two states coupled to a

doubly degenerate harmonic bath, but it is not in the usual
spin-boson form. Instead, the R state corresponds to a surface
centered about qj

A = dj, qj
B = 0, while the L state corresponds

to a parabolic potential surface centered about qj
A = 0, qj

B = dj.
These surfaces are illustrated in Figure 1 for the same-
frequency normal modes of the two monomers. This
arrangement of the vibrational potential surfaces suggests
the transformation

= + = −Q q q q q q
1
2

( )
1
2

( )j j j j j j
A B A B

(2.11)

In these new coordinates, the single-excitation Hamiltonian
becomes

∑

∑

ω ω

ω ω

̂ = ̂ +
̂

+ ̂ − ̂

+
̂

+ ̂ − ̂ | ⟩⟨ | − | ⟩⟨ |

=

=

i

k

jjjjjjjj

y

{

zzzzzzzz
i

k

jjjjjjjj

y

{

zzzzzzzzz

H H
P

m
m Q

d
m Q

p

m
m q

d
m q R R L L

2
1
2 2

2
1
2 2

( )

j

n
j

j j
j

j j

j

n
j

j j
j

j j

single 0
1

2
2 2 2

1

2
2 2 2

(2.12)

where Pj and pj are the corresponding conjugate momenta.

Figure 1. Schematic illustration of normal-mode potential surfaces
and coordinate transformation for a single vibrational mode of the
ground (blue) and the two singly excited (red) monomers in the
chlorophyll dimer. The shaded blue and red circles illustrate the
vibrational density for initial conditions (i) and (ii). The shaded
green ellipse (the projection of the blue circle) indicates the
vibrational density in the space of the coupled difference normal-
mode coordinate for initial condition (i).
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As can be seen in Figure 1, the sum coordinate Qj is not
coupled to the electronic states. Thus, this coordinate does
not play a role in the energy transfer and can be removed
from the dimer Hamiltonian. The potential minima of the
singly excited states lie along the qj coordinate and are shifted
by d / 2j when the dimer is in the R state, and by −d / 2j

when the dimer is in the L state. After dropping the
uncoupled Qj terms, the chlorophyll dimer Hamiltonian takes
the familiar spin-boson form

∑σ ω σ̂ = − ̂ + ̂ + ̂ − ̂ ̂ ≡ ̂ + ̂
=

i
k
jjj

y
{
zzzH J p m q c q H H

1
2

1
2x

j

n

j j j j j z
1

2 2 2
0 env

(2.13)

where Ĥ0 = −Jσ̂x is the electronic part, ω=c d m / 2j j j
2 , and

σx, σz are the usual Pauli spin matrices. In this Hamiltonian,
the couplings to the “bath” are reduced from those in a single
chlorophyll by a factor of 2 . The reason for this decrease is
the increase in the actual distance between the vibrational
potential minima, which (as seen from Figure 1) is given by
the hypotenuse of the triangle, while the distance of the
coordinates corresponding to left and right states in eq 2.13
remains equal to 2. The chlorophyll dimer Hamiltonian is
similar to the form employed by Tiwari et al.,24 which was
suggested on the basis of physical arguments pertaining to
symmetric and antisymmetric vibrations.

III. INITIAL CONDITIONS
We assume that, at t = 0, BChl A is placed in the excited
electronic state; i.e., the initial density matrix is given by

ρ ρ̂ = | ⟩⟨ | ̂(0) 1 0 1 0 (0)AB A B A B
vib
AB

(3.1)

and we consider the following two possibilities for the
vibrational degrees of freedom.
Initial Condition (i). Franck−Condon Excitation. The

vibrational modes of each BChl are initially in equilibrium
with the ground electronic state of that monomer

ρ ̂ = β β− ̂ − ̂
(0) e eh h

vib
AB 0,vib

A
0,vib
B

(3.2)

where β = 1/kBT is the reciprocal temperature. This initial
condition is consistent with a Franck−Condon transition. The
matrix element of the Boltzmann operator for the quadratic
vibrational modes of BChl α in its ground electronic state has
the form79

∏κ λ λ

μ

⟨ ′ | | ⟩ = [− ′ −

− ′ ]

α β α α α

α α

− ̂

=

α

q q

q q

q qe exp ( ) ( )h

j

n

j j j j

j j j

1

2 20,vib

(3.3)

where κ, λj, and μj are constants that depend on the mode
frequencies and the temperature. Using the coordinate
transformation relations of Section II, we obtain

+ = +

′ + ′ = ′ + ′

q q Q q

q q q q Q Q q q

( ) ( )j j j j

j j j j j j j j

A 2 B 2 2 2

A A B B
(3.4)

Multiplying the Boltzmann operator matrix elements for the
two monomers and using eq 3.4, we arrive at the result

κ λ

μ

⟨ ′ | | ⟩⟨ ′ | | ⟩

= [− + + ′ + ′

− ′ + ′ ]

β β− ̂ − ̂

Q q Q q

Q Q q q

q q q qe e

exp ( )

( )

h h

j j j j j

j j j j j

A A B B

2 2 2 2 2

0,vib
A

0,vib
B

(3.5)

Since only the difference coordinates contribute to the
dynamics, the vibrational component of the initial density is

κ λ μ[− ′ + − ′ ] = ⟨ ′| | ⟩β− ̂
q q q q q qexp ( ) ej j j j j j

h2 2 bath
unshifted

(3.6)

That is, the density operator for the bath is given by

ρ ̂ =
β

β

− ̂

− ̂
(0)

e

Tr e

h

hvib
(i)

bath
unshifted

bath
unshifted

(3.7)

where

∑ ω̂ =
̂

+ ̂
=

i

k

jjjjjjj
y

{

zzzzzzzh
p

m
m q

2
1
2j

n
j

j jbath
unshifted

1

2
2 2

(3.8)

is the Hamiltonian for the bath degrees of freedom in eq 2.13.
The density of eq 3.6 is shown schematically in Figure 1.

Initial Condition (ii). Equilibrated Excited State. As a
second possibility, the vibrational modes of the initially
excited BChl are assumed to have equilibrated with the
excited electronic state of that pigment prior or the onset of
dynamics on the singly excited Hamiltonian, i.e.

ρ ̂ = β β− ̂ − ̂
(0) e eh h

vib
AB 1,vib

A
0,vib
B

(3.9)

In this case, the Boltzmann matrix element for pigment A is
given

∏κ λ

λ μ

⟨ ′ | | ⟩ = [− ′ −

− − − ′ − − ]

β α

α α α

− ̂

=
q d

q d q d q d

q qe exp ( )

( ) ( )( )

h

j

n

j j j

j j j j j j j j

A A

1

2

2

1,vib
A

(3.10)

while for pigment B it still has the form of eq 3.3. Using again
the coordinate transformations of the previous section and
performing some straightforward algebra, we find

κ λ

λ λ λ

μ

μ
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− − − ′ − − −
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d

Q
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2

2 2 2

exp
2 2

2 2
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j
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j

j j
j

j
j

j j
j

j
j

A A B B 2
2

2 2 2

1,vib
A

0,vib
B

(3.11)

One sees that the contribution of the coupled difference
coordinate is
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That is, the density operator for the bath is given by
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− ̂

− ̂
(0)

e

Tr e
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hvib
(ii)

bath
shifted

bath
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That is, the initial state is in this case the Boltzmann
distribution for the effective bath modes in equilibrium with
the initially excited R-localized electronic state.

IV. STATIC DISORDER

Chlorophyll molecules are integral components of the
photosynthesic apparatus of plants and bacteria, where they
are embedded in light harvesting chrlorophyll−protein
complexes. The present treatment of the BChl vibrations in
terms of normal modes, with parameters obtained from
experimental Huang−Rhys factors, does not allow embedding
the BChl dimer in its protein scaffold. The slow motions of
the protein (those which occur on time scales much longer
than those of EET dynamics) are commonly modeled as a
static disorder, which affects the energies of the two exciton
states by varying amounts. In addition to presenting accurate
quantum mechanical results for the symmetric dimer, in the
next section we report a qualititave picture of the effects of
sluggish protein motion by accounting for static disorder in
the exciton-vibration dynamics. We emphasize that the static
treatment of disorder cannot account for the dissipative effects
of phonon-like protein degrees of freedom on the population
dynamics of the BChl dimer. If protein fluctuations were to be
included, the dephasing effects from a large number of modes
with characteristic times of the order of the EET would lead
to additional quenching of the oscillatory patterns observed in
our calculations.
To this end, we return to eq 2.10 and allow the ground and

excited state energies of the two BChl monomers to differ.
Defining the parameter ε = [ − − − ]E E E E( ) ( )1

2 1
A

0
A

1
B

0
B

(i.e., half the excitation energy of the two molecules) and
adjusting the zero of energy, the singly excited electronic
Hamiltonian becomes

ε

σ εσ

̂ = | ⟩⟨ | − | ⟩⟨ | − | ⟩⟨ | + | ⟩⟨ |

= − +

H R R L L J R L L R

J

( ) ( )

x z

0

(4.1)

In the calculations presented in the next two sections, we
assume that the excitation energy difference is normally
distributed around its mean value ε,̅ with a standard deviation
σ.

V. PARAMETERS AND METHODS
Raẗsep et al.13 have reported Huang−Rhys factors for the
electron−phonon couplings for the 50 most strongly coupled
BChl vibrational modes. These parameters were used to
determine the ground−excited state mode displacements and
thus the coupling coefficients in eq 2.13. The collective effects
of the bath are captured in the spectral density function

∑ω π
ω

δ ω ω= −J
c

m
( )

2
( )

j

j

j j
j

2

(5.1)

The spectral density of the bath corresponding to the
transformed BChl dimer Hamiltonian of eq 2.13 is shown
in Figure 2. It is clear that the intricate structure of the BChl
spectral density cannot be accounted for by simple analytical
models.

For the isolated BChl dimer, the only other parameter
needed is the electronic coupling J. A number of methods
have been used to compute this parameter in the antenna
complexes of photosynthetic bacteria. For LH2, most reported
values are in the 200−400 cm−1 range. In this work, we
present results with the intradimer coupling parameter J = 363
cm−1 obtained by Tretiak and Mukamel29 and also for the
intra- and interdimer coupling values 315 and 245 cm−1

reported by Freiberg et al.80 We also present calculations
for a smaller value of the electronic coupling, J = 181 cm−1.
The standard deviation for the static disorder parameter is σ =
220 cm−1.80

The reduced density matrix that corresponds to eq 2.13 is
given by

ρ ρ̃ = ⟨ | ̂ | ⟩ =− ̂ ℏ ̂ ℏt i j i j R L( ) Tr e (0)e , ,ij
iHt iHt

vib
/ /

(5.2)

The diagonal elements of eq 5.2 give the populations of the
two BChl excited states; the population P(t) of the excited
state of BChl A is given by

ρ= ̃P t t( ) ( )RR (5.3)

For an initial state corresponding to the excitation localized
on monomer A, the initial density operator has the form

Figure 2. Spectral density for the bacteriochlorophyll dimer (in
arbitrary units).
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ρ ̂ = | ⟩⟨ |
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− ̂

− ̂R R(0)
e

Tr e

h

h

bath

bath (5.4)

where, according to the results of Section IV, the bath
Hamiltonian is either unshifted or shifted.
The populations of the two exciton states are obtained

using the quantum−classical path integral methodology. The
QCPI formulation70−72 involves summing the amplitudes of
the quantum paths of the two-state system, which are
augmented by semiclassical phases obtained along classical
trajectories. Each classical trajectory hops between the two
electronic states as dictated by a particular quantum path;
thus, the number of trajectories from each phase space initial
condition is equal to the number of paths of the electronic
system. The memory quenching effects of the environment are
exploited to prevent the exponential proliferation of
trajectories.76,81,82 Once converged with respect to the path
integral time step and the memory time, the QCPI expression
produces rigorous quantum−classical results, which are free of
any assumptions or adjustable parameters. The integration
with respect to trajectory initial conditions is performed using
Metropolis sampling83 with 35 000 initial conditions.
In the particular case of a harmonic bath, the QCPI

formulation reverts to the full quantum mechanical
expression.70 Since the BChl vibrations are treated in terms
of normal modes which involve a quadratic potential function,
the QCPI calculations on the BChl dimer produce numeri-
cally exact results. Further acceleration of the calculation for
this harmonic environment is possible by exploiting the
cumulative treatment of the harmonic bath back-reaction.84,85

The phase space average with respect to trajectory initial
conditions is performed via Metropolis sampling.83

The QCPI results presented in the next section converged
with a time step equal to 4.84 fs. The QCPI calculations were
performed with a memory length equal to 48.38 fs in the case
of initial condition (i), and 29.04 fs for initial condition (ii).
The effects of static disorder are included by averaging the

QCPI population results with respect to the excitation energy
difference ε, assuming36 that the energy of the excited state of
each of the chlorophyll monomers follows a Gaussian
distribution with mean equal to ε ̅ and standard deviation σ
= 220 cm−1.80 Therefore, the excitation energy difference 2ε is
sampled from a Gaussian with standard deviation

× −2 220 cm 1.
The average over the asymmetry parameter is performed

using a Gauss−Hermite quadrature with 41 grid points. Figure
3 shows a histogram of the points, along with their weights. It
is seen that only 13 grid points have a weight greater than
0.001. We have performed calculations for these points and
averaged the obtained populations.

VI. EXCITON POPULATION DYNAMICS

In this section, we present the results of our calculations.
Figure 4 shows the population dynamics of the BChl A
excited state for a symmetric dimer (i.e., ε = 0) at T = 300 K
for the electronic coupling values J = 363, 315, 245, and 181
cm−1.30,80 The tunneling splitting of the electronic state
doublet is equal to 2J, which for J = 363 cm−1 corresponds to
an oscillation with period ∼54 fs. The coupled vibrations
introduce dissipative effects, and the electronic populations
exhibit underdamped oscillations. Decreasing the value of J
slows down the population oscillations and leads to faster

damping, as the coupling to the decohering vibrations is
effectively stronger for a smaller value of the electronic
coupling.
The two initial conditions discussed in Section III are seen

to lead to small differences in the dynamics, which are more
prominent at short times. With Franck−Condon initial
condition (i), the density of the vibrational modes is initially
in between the potential minima of the R and L states; thus, it
has more energy compared to the case of initial condition (ii).
As a result, the vibrational bath has a slighty higher effective
temperature in this case, causing faster damping of the
oscillatory population dynamics. The slower dynamics that
arise with smaller J values are less susceptible to effects
brought about by the initial distribution of the vibrational
modes, as the bath equilibrates on a time scale faster than the
electronic motion in this case.
The population curves in Figure 4 do not have the familiar

smooth curvature commonly seen in spin-boson dynamics
with model spectral densities. (For example, the red data
points in Figure 4a have the appearance of a hand-drawn
curve.) As evidenced by the small size of the error bars, these
features are not a consequence of Monte Carlo noise, and
they are not the result of numerical error. Rather, they are a
manifestation of the richness of the true BChl normal-mode
spectral density, which is characterized by wildly varying
Huang−Rhys factors. These characteristics cannot be captured
by simple, analytic spectral density functions defined in terms
of just two or three parameters, and thus, they have not been
observed in previous theoretical calculations. The complexity
of time scales in the BChl dimer vibrational bath is more
prominent in the early time dynamics, in particular in the case
of initial condition (i) which corresponds to an initially
unrelaxed (i.e., more energetic) bath. As time progresses,
relaxation of the bath leads to smoother dynamics. The
population curves obtained with smaller J values exhibit
slower oscillations, and the early effects of the unrelaxed
multimode bath are less noticeable.
Upon close examination, the envelope of the oscillations in

P(t) obtained with the higher J values is seen to follow an
unusual nonexponential pattern; i.e., the population at the
second recurrence is only slightly diminished compared to
that at the first recurrence. Again, this trend is different from
that observed in typical spin-boson calculations with analytical

Figure 3. Weights corresponding to various different asymmetries
obtained using a Gauss−Hermite discretization.
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spectral densities. The observed behavior is a consequence of
the very long memory of the BChl vibrational bath. As the
value of J is decreased, the normal-mode frequency
distribution is effectively higher, leading to less dramatic
memory effects.
Next, we examine the effects of static disorder for the

calculated electronic coupling value J = 315 cm−1.36 In Figure
5, we show the excited state population of pigment A for the
asymmetric dimer Hamiltonian modeling static disorder. The

energy splitting is now given by ε+J2 2 2 . As expected,

strongly asymmetric configurations give rise to localized
eigenstates of the singly excited Hamiltonian, which disrupt
the tunneling dynamics, leading to only mildly oscillatory
evolution.
Figure 6 shows the averaged population with respect to the

Gaussian distribution with mean asymmetry parameter ε ̅ = 0
and compares this to the population of the symmetric dimer.
It is seen that static disorder leads to a slight blue shift of the
central frequency and considerable damping of the oscillation.
Similar results are presented in Figure 7 for asymmetry
distributions with mean ε ̅ = ±151.8 cm−1. In all cases, the

Figure 4. Excited state population of pigment A in a symmetric dimer as a function of time at T = 300 K. Red and black correspond to vibrational
initial conditions (i) and (ii), respectively. Top left: J = 363 cm−1. Top right: J = 315 cm−1. Bottom left: J = 245 cm−1. Bottom right: J = 181
cm−1. The Monte Carlo error bars indicate one standard deviation.

Figure 5. Excited state population of pigment A as a function of time at T = 300 K for various values of the disorder parameter with J = 315
cm−1. Black, ε = 0; blue, ε = ±151.8 cm−1; red, ε = ±303.7 cm−1; green, ε = ±456.1 cm−1; orange, ε = ±609.2 cm−1. Lines with dots correspond
to positive values of ε. Left: initial condition (i). Right: initial condition (ii).
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effects of different bath initial conditions are still noticeable in
the averaged population dynamics.
Our results show no evidence of EET enhancement by a

vibrational mode resonant with the electronic transition
energy.23 Instead, the change in the population dynamics is
the collective result of all coupled vibrational modes, and the
main effect is damping of the oscillations.

VII. DISCUSSION AND CONCLUDING REMARKS

In this paper, we have presented numerically exact, fully
quantum mechanical simulations of EET dynamics in BChl
dimers, where all 50 coupled vibrational modes of each BChl
are accounted for with the precise parameters obtained from
experimental Huang−Rhys factors. To our knowledge, the
present study is the first to treat all BChl normal modes
explicitly with spectroscopic accuracy. By avoiding the use of
model spectral densities, which can alter significantly the
characteristics of the vibrational modes, our results provide a
quantitative picture of exciton-vibration dynamics in BChl
dimers. The population curves exhibit characteristics that are
not present in earlier calculations employing model spectral
densities. These features stem from the complexity of the
BChl vibrational bath.
The transformation presented in Sections II and III shows

that the Hamiltonian for the BChl dimer, where the electronic
states are coupled by Frenkel exciton terms, and each
electronic state includes the vibrational normal modes of
each pigment, can be mapped exactly on the familiar spin-

boson Hamiltonian where the two sites are coupled to a
common bath of modes with rescaled parameters. Initial
conditions reflecting a Franck−Condon excitation or a
vibrational state pre-equilibrated with the excited BChl are
mapped, respectively, to unshifted and shifted bath initial
conditions.
The work presented here focuses on an isolated BChl

dimer, for which the QCPI results presented in Section VI
show that the excitation energy oscillates persistently between
the two pigments under physiological conditions. Static
disorder arises from ω→0 degrees of freedom of the
environment, whose slow modulation compared to the TLS
dynamics is equivalent to an ensemble of asymmetric TLS
configurations. Asymmetry tends to cause a suppression of
tunneling, leading to some damping of the oscillations. We
emphasize that the static disorder treament of the medium is
incapable of accounting for the dissipative role of phonon-like
modes in the actual protein environment. Thus, if the dimer
were to be embedded in its protein scaffold, the additional
dynamic disorder from the dephasing effects of sluggish
protein motion would lead to further suppression of the
oscillatory features in the population dynamics. Calculations
investigating the effects of the protein environment found in
light harvesting systems, monitoring the relaxation following
excitation of an electronic eigenstate of the dimer, and also
exploring the EET dynamics in longer BChl chains and rings,
will be reported in future papers by our group.

Figure 6. Excited state population of pigment A with J = 315 cm−1 at T = 300 K. Black: symmetric dimer, ε = 0. Red: population averaged with
respect to the static disorder parameter with mean value ε ̅ = 0. Left: initial condition i. Right: initial condition ii.

Figure 7. Excited state population of pigment A, averaged with respect to the static disorder parameter, with J = 315 cm−1 at T = 300 K. Black:
mean of static disorder distribution at ε = 0. Blue: mean of static disorder distribution at ε ̅ = −151.8 cm−1. Red: mean of static disorder
distribution at ε ̅ = 151.8 cm−1. Left: initial condition (i). Right: initial condition (ii).
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