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Abstract

Exact quantum dynamical simulation of processes in highly coupled condensed phase reactions is extremely challeng-
ing. The work reported in this dissertation builds on top of two different approaches. First, we present methods for
calculating the multidimensional Wigner function. We start with a simple and approximate method which utilizes
classical trajectories. This fits well with the subsequent classical propagation involved in a quasiclassical simulation.
We use this method to study molecular Hamiltonians in both normal mode and Cartesian coordinates. Despite the
simplicity of this method, there can be systems which are extremely anharmonic, where the method can be extremely
slow to converge when there is no obviously good starting point. To overcome this problem, we propose a numer-
ically exact path integral based method which can be systematically converged to any desired level of accuracy at
increasing computational cost. Both these methods can be used with quantum classical simulation frameworks.

Second, we present developments of rate theory methods. We extend the existing reactive flux rate methods to
exact quantum classical methods. Two different initial conditions are proposed. If the transients are important, we
show that the so-called “non-equilibrium” initial condition can help us unify the fast timescales as well as the long
timescale dynamics governed by the rate. On the other hand, if the transients are of less importance, we propose a
“near equilibrium” initial condition that can very effectively get rid of most of the transients. This initial condition
captures the system-solvent interaction without increasing the complexity of the algorithm.

Finally, we present a method of incorporating the concept of blip summation into the quantum-classical path
integral (QCPI) method. This gives additional speedup on top of all the other advancements that make QCPI a
very attractive method for doing exact quantum dynamics in condensed phase.
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Chapter 1

Background and introduction

The underlying physical laws necessary for the mathematical theory of a large part of physics and
the whole of chemistry are thus completely known, and the difficulty is only that the exact
application of these laws leads to equations much too complicated to be soluble. It therefore
becomes desirable that approximate practical methods of applying quantum mechanics should
be developed, which can lead to an explanation of the main features of complex atomic systems
without too much computation.

P. A. M. Dirac, 19291

Quantum mechanics, as the set of physical laws behind chemistry, has been well understood since the first half
of the last century. In fact, aspects of this theory are simpler than its elder sibling, classical mechanics. Quantum
physics is a linear theory and therefore does not show chaotic dynamics, which can lead to numerical instabilities in
simulations. The problem with simulations of microscopic particles lies in the fact that quantum dynamics shows an
exponential growth with the number of dimensions.

This has led to a huge proliferation of approximate methods, both analytical and numerical. The large dimen-
sionality of condensed phase problems, that is the bane of quantum dynamics, also happens to provide a saving grace.
Generally, when many uncorrelated degrees of freedom interact, the average result washes away fine details and can
often be well represented by Gaussian processes. This is formally expressed as the central limit theorem and the key
observation behind the so-called linear response family of approximations. One of the most famous applications of
the linear response approximation2 is the Marcus theory3,4 for electron transfer in solvents. The other simplifying
observation is that when describing thermal processes in condensed phase systems, fine quantum effects like inter-
ference and coherence are washed away, leaving behind dynamics that is mostly classical, with “minor” corrections
from quantum mechanics. Of course, this is not the entire story. There are tunneling processes, which are only de-
scribable through quantum mechanics, and there can be processes like superfluidity and superconductivity, which
are macroscopic manifestations of quantum mechanical phenomena. The latter, being a different domain of research
with its own sophisticated methods and set of approximations, is beyond the scope of the current work. However,
we need to be able to account for tunneling. It is the basis of all bond breaking and making, and consequently all of
chemistry.

The understanding that classically forbidden processes like tunneling occur only in a very small dimensional
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subspace of the space spanned by all the degrees of freedom, allows for development of methods based on the idea
of system-solvent separation. The low dimensional system is treated at some level of quantum mechanics, whereas
the high dimensional solvent (constituted by all the degrees of freedom left over after defining the system) is treated
using classical trajectories. This makes it feasible to get accurate dynamical information about the system despite the
presence of a condensed phase environment. We will differentiate between two ways of treating the environment:
using classical mechanics, which uses the idea that most of the dynamics in condensed phase is classical, or through
a harmonic bath utilizing linear response. The latter allows for exact quantum mechanical solutions,5–8 whereas
the former allows for approximate treatment of the solvent beyond the linear response regime. There are various
numerical methods which study the dynamics of a quantum system in a classical solvent.9–12 In this work, we would
focus solely on the quantum-classical path integral method (QCPI),13–17 which is a rigorous method that under
convergence treats the interaction between the quantum system and the classical solvent without any approximations.

The solvent or the environment (both the terms are used interchangeably in this thesis) is made up of quantum
mechanical atoms. Yet, as we mentioned, most of the quantum mechanics is washed away in a thermal process. The
emergence of classical phenomena out of quantum mechanics has been a topic of intense study over the years. The
path integral representation of quantum mechanics18,19 is an especially useful starting point because it shares the
common language of paths with classical mechanics. Instead of just considering the subset of paths with stationary
action20 (expressed by the Euler-Lagrange equation), path integral quantum mechanics associates a complex ampli-
tude of unit norm with every path. Processes are described as a sum over the amplitudes of all the paths. This now
allows us to understand the classical limit of quantum mechanics in a simpler manner. When Planck’s constant is
smaller than the scales relevant to the physics, almost all paths but the classical trajectories have wildly fluctuating
phases. They cancel each other thus giving dynamics which is adequately represented by the classical trajectories.

However despite the classical nature of the dynamics of the solvent, there are minor corrections from quantum
mechanics which are needed to make the classical description of the solvent degrees of freedom acceptable. These
corrections stem from zero-point energy (ZPE) and non-negligible effects of quantum dispersion. Isotope effect, for
instance, is a result of change of ZPE because of the mass of the particle. There are Monte Carlo based methods for
exactly calculating the thermal density matrix of a multidimensional system. However, that lacks a full phase space
description, and cannot therefore be used for launching classical trajectories. The rigorous method of deriving this
form of mechanics which incorporates quantum effects in classical trajectories is done by taking the explicit limit
of small ℏ and is called semiclassical dynamics. Van Vleck21 first proposed a form for the semiclassical propagator
in coordinate space as a boundary value problem in 1928. The expression was later modified to handle caustics by
Gutzwiller.22 A different semiclassical expression was proposed by Herman and Kluk.23 Miller24 demonstrated the
equivalence of the two at the semiclassical level by deriving the Herman-Kluk propagator from the Van Vleck propa-
gator by applying the modified Filinov filtering procedure. A subsequent linearization of the difference between the
forward and backward paths of time propagation of a density matrix leads to a form where the dynamics is exactly
classical, but the starting distribution is a phase space representation of the quantum density matrix called the Wigner
function.25–27 This however is not the only way of deriving the Wigner function, which is a different representation
of quantum mechanics. It is possible to do full quantum mechanics using the Wigner function as the starting pos-
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tulate, with equations of motion called the Moyal series.28 Classical mechanics can be shown to be the first order
truncation of the infinite Moyal series. The quasiclassical dynamics stemming therefrom is variously called Wigner
method29 or linearized semiclassical dynamics.27,30,31 This Wigner distribution is represented as a multidimensional
Fourier transform of the operator in question, the density matrix in this case. Thus, the problem of calculating the
Wigner transform is, in general, intractible in multiple dimensions. There are a variety of methods for approximating
the Wigner distribution,26,32–34 none of which can be systematically improved. In Part I, we present two methods
for calculating the Wigner function. The first method described in Chapter 2 is approximate and very simple. It is
based on classical trajectories, which makes it especially attractive for the subsequent classical propagation. We ex-
plore some interesting properties of this resultant distribution, which we call the adiabatic switching Wigner (ASW)
distribution and show how to apply it to study molecular systems described by Hamiltonians in normal mode and
Cartesian coordinates. The second method, reported in Chapter 5 is a numerically exact method, where we have de-
veloped a path integral based Monte Carlo technique to estimate the Wigner function. This does not suffer as badly
from the “sign” problem as a naïve Monte Carlo procedure would while evaluating the required Fourier transform.

In Part II, we return to the system-solvent decomposition and exact quantum dynamics. Recent work on QCPI
has substantially improved the scaling of the algorithm. While it is increasingly becoming possible to directly sim-
ulate ultrafast dynamics with relative ease, tackling “slow” chemical reactions in sluggish media still proves to be
challenging with very long non-Markovian memories. For many of these very slow reactions, the early transients in
the dynamics are unimportant, and these reactions are well characterized by the single rate constant. In fact, rate
theories have been a cornerstone of chemistry since very early days. The quest to calculate the rate of reactions has
been a long standing one starting with the Arrhenius equation. There have been extremely successful approxima-
tions over the years. Very early on there were the transition state theories of classical mechanics,25,35 Fermi’s Golden
Rule and Redfield equations. Marcus theory3,4 for rates of electron transfer in solvents is an extremely powerful and
widely used perturbative expression for the short time rate. In processes where transients have an impact, this rate
could be different from the true time scales. Generally rate is governed by the characteristic time scale of the post-
transient exponential decay to equilibrium. Possibly one of the first fully quantum rate theory was given by Miller.36

It relates the rate with various quantum correlation functions involving the flux operator.37 Since calculating these
correlation functions exactly is difficult, various semiclassical approximations were developed.30,36,38–45 Topaler and
Makri46 have developed an exact complex-time method for calculating this correlation function and consequently
the exact rate for a two-level system coupled with a harmonic bath.

So, the logical next step is to use QCPI to calculate the exact quantum rate for an atomistic solvent. This proves
to be problematic since we need to calculate the equilibrium of a quantum system described by a coordinate space
representation interacting with a solvent described by the quasi-classical phase space. In Chapter 6, we show how it is
possible to side-step this issue, and in the process develop a method that can retain information about the transients,
which can be important in case of ultrafast reactions where the timescales are not well separated. Then in Chapter 7
we explore other possibilities for calculating the rate more efficiently. Both these methods can be used with QCPI and
applied to atomistic solvents. New method developments involving the path integral based Wigner function method
are still in progress. These developments would make it possible not only to calculate the rate but any arbitrary
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correlation function with QCPI.
With all these developments, it is easy to forget that the efficiency is still, to a large extent, governed by the base

on which everything else is built — in this case QCPI. If we can speed up QCPI, then we automatically speed up both
the direct dynamics and the rate methods. In the final chapter, based on developments not reported in this thesis,
we show the possibility of enhancing QCPI with a new reformulation called blip summation, first implemented
by Makri.47–50 Previous developments have already made QCPI a very attractive method for doing exact quantum
dynamics. This incorporation of blip summations makes it even more viable, while keeping all the benefits intact.
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Part I

Wigner function
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Chapter 2

Wigner phase space distribution via classical
adiabatic switching

2.1 Introduction

This chapter is based on the paper, A. Bose and N. Makri, “Wigner phase space distribution via classical adiabatic
switching”, J. Chem. Phys. 143, 114114 (2015).

Quantum mechanical simulation of the time evolution of condensed phase and biological systems is infeasible
due to the computational cost scaling exponentially with the degrees of freedom. Classical molecular dynamics sim-
ulations provide a simple and computationally efficient alternative for doing such computations using Newtonian
trajectories. The major corrections to classical dynamics calculations in large systems typically arise from quantiza-
tion of the initial density matrix and, in many cases, nonadiabatic effects, usually associated with transitions among
Born-Oppenheimer states. Quantum coherence effects, which are extremely important in small systems, are usually
washed out in large biological molecules or in processes occurring in liquid environments. Quantization of the ini-
tial density matrix is necessary when the zero-point energy (ZPE) is not negligible and quantum dispersion leads to
distributions that differ substantially from the Boltzmann function. In order to capture the system’s dynamics via
classical trajectories, the quantized density matrix needs to be converted to a phase space function. There are two sim-
ilar methods for performing such calculations: the linearized semiclassical initial value representation2–4 (which is
also known as the Wigner method5,6 and which has been derived by linearizing the path integral expression7), where
a phase space function is obtained via the Wigner transform of the initial density, and forward-backward semiclassi-
cal dynamics8–10 (FBSD), where the phase space function is given by the coherent state transform11 with appropriate
corrections. The Wigner density is also required in methods that employ quantum-classical Liouville dynamics.12,13

Many mixed quantum-classical methods, like the quantum-classical path integral (QCPI) methodology,14–17 require
the knowledge of the phase space distribution of the environment degrees of freedom unless zero-point energy can
be neglected.

The first step in all the methods mentioned above is the evaluation of the required phase space transform of the
density operator, and considerable effort has been devoted to the development of techniques for this task. Several
approaches are available for evaluating coherent state representations of the density, including local harmonic approx-
imations,18 semiclassical propagation in imaginary time,19 and numerically exact path integral representations.20,21

Evaluation of the Wigner function presents a more challenging task. Various approximate schemes have been pro-
posed, including local22 variationally optimized7 Gaussian approximations, imaginary time semiclassical evolution,23
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and the thermal Gaussian approximation24,25(which consists of frozen Gaussian dynamics26 in imaginary time) along
with extensions that capture quantum corrections.27 These techniques have been successfully applied to condensed
phase systems.28–31

The Wigner transform5 of a density operator ρ̂ is given by the Fourier-type integral W(x0, p0)

W(x0, p0) =
1√
2πℏ

∫ ∞

−∞

⟨
x0 + 1

2Δx
∣∣ ρ̂∣∣x0 − 1

2Δx
⟩
e−

ip0.Δx
ℏ dΔx (2.1.1)

(We use one-dimensional notation for convenience; the generalization of Equation 2.1.1 to many dimensions is
straightforward.) The oscillatory nature of the Fourier transform makes numerical evaluation of the Wigner func-
tion an extremely challenging task. In particular, the “sign problem” that arises from the oscillatory Fourier factor
prohibits the use of Monte Carlo methods,32 leaving no practical alternatives for exact evaluation of the integral in
systems of many degrees of freedom.

In this chapter, we develop a very simple, approximate method for obtaining the Wigner transform of a den-
sity operator, which is applicable to a pure state as well as the Boltzmann density. The basic idea is to use the exact
Wigner density for a zeroth order Hamiltonian to populate the phase space of the system and to evolve these phase
space points by classical trajectories, gradually switching on the perturbation potential. According to the classical
adiabatic theorem, a trajectory that lies on a phase space torus that corresponds to a particular eigenstate will main-
tain a constant action, remaining on the eigenstate of the evolving Hamiltonian as long as the adiabatic switching
procedure33,34 is carried out very slowly. By adjusting the weight of each trajectory to account for the change in
the Boltzmann population resulting from the energy change of the trajectory, we are able to adiabatically evolve the
zeroth order phase space density to the one that closely approximates the Wigner function of a more complex Hamil-
tonian. Since most uses of the Wigner function are in connection with classical trajectories, the adiabatic switching
step is very easily incorporated in such calculations and requires little additional effort. Perhaps, the most appealing
feature of our method is the simplicity of the algorithm, which (unlike other methods, such as the thermal Gaussian
approximation24,25,27) is based exclusively on classical trajectory input. Yet, we find the results to be very accurate,
and the resulting Wigner distribution is in all of our test cases nearly indistinguishable from the one obtained by
accurate integration of Equation 2.1.1. An additional benefit of our method is that by its very construction, the
generated Wigner distribution is invariant under classical trajectory propagation, leading to rigorous preservation of
thermodynamic averages.

In Section 2.2, we motivate the idea, starting with eigenstates of harmonic and anharmonic Hamiltonians and
proceeding to the thermal density matrix. Test calculations on various one-dimensional and dissipative systems are
presented in Section 2.3, and some concluding remarks are given in Section 2.4.
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2.2 Classical adiabatic theorem andWigner density for pure states

2.2.1 Harmonic oscillator eigenstates

Consider a harmonic oscillator Ĥ(0) of frequency ω0

Ĥ(0) =
p̂2

2m
+

1
2
mω20x̂2 (2.2.1)

along with its ground state wavefunction Ψ(0)
0 of energy E(0)

0 = 1
2ℏω0. The Wigner function of the density operator∣∣∣Ψ(0)

0

⟩⟨
Ψ(0)

0

∣∣∣ is given by the expression

W(0)
0 = π−1 exp

[
− 1
ℏ

(
mω0x20 +

p20
mω0

)]
(2.2.2)

The function can be rewritten as

W(0)
0 = π−1 exp

(
−E (x0, p0)

E(0)
0

)
(2.2.3)

where

E (x0, p0) =
1
2
mω20x20 +

p20
2m

(2.2.4)

is the energy of the classical system at (x0, p0). Equation 2.2.3 indicates that the Wigner density drops to 1/e
of its maximum value at phase space points x0, p0 whose energy equals the ground state energy of the system. These
points form an ellipse, shown schematically in the Figure 2.1(a), whose intersection with the position axis is the
classical turning points of the oscillator. Next, consider a harmonic oscillator Ĥ of frequency ω = αω0,

Ĥ =
p̂2

2m
+

1
2
mω2x̂2 (2.2.5)

for which the ground state energy is E0 =
1
2αℏω0. The phase space points that correspond to this energy are shown

in Figure 2.1(b). Compared to the ellipse for the oscillator with frequency ω0, the new ellipse is squeezed by a factor
of

√
α along x and stretched by the same factor along the p axis. However, the phase space area remains the same,

equal to the action of the ground state, i.e., S0 = S(0)0 = 1
2ℏ.

Now, suppose the harmonic oscillator Ĥ(0) is used as the zeroth order Hamiltonian, while the target system is
the harmonic oscillator Hamiltonian Ĥ of frequency ω = αω0. Imagine launching a trajectory from a phase space
point (x0, p0) on the 1/e contour of the Wigner function for Ĥ(0), i.e., with energy equal to 1

2ℏω0, while gradually
increasing the oscillator frequency to αω0.
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Figure 2.1: Deformation of energy boundary from the zeroth-order to the target Hamiltonian in two cases. (a) and
(b) Frequency doubling (α = 2) for a harmonic oscillator. (c) and (d) Addition of anharmonic terms to a harmonic
oscillator.

If this process is carried out infinitely slowly, the classical adiabatic theorem guarantees that the action of the
trajectory will remain unchanged as its energy slowly changes to 1

2ℏω. Thus, the trajectory that initially traversed
the ellipse of Figure 2.1(a) will eventually be found to traverse the ellipse of Figure 2.1(b). The evolution of such a
trajectory is shown in Figure 2.2 for a switching time interval equal to 20 oscillation periods. (This switching time,
which is not sufficiently long for accuracy, is chosen for clarity of illustration.)

If the above procedure is repeated with many trajectories whose initial conditions trace out the ellipse of Fig-
ure 2.1(a), these trajectories will be found to trace out the ellipse of Figure 2.1(b) at the end of the adiabatic switch-
ing process. Thus, the 1/e contour of the Wigner density for the zeroth order Hamiltonian is transformed to the 1/e

density contour of the Wigner function that corresponds to the target Hamiltonian Ĥ. The above argument can be
extended to phase space points selected to correspond to any density contour of the Wigner function. Thus, one sees
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Figure 2.2: Evolution of a trajectory for a harmonic system upon a slow doubling of its frequency.

that the Wigner density of the zeroth order Hamiltonian will be transformed exactly to the correct Wigner density
of the target harmonic system if the perturbation potential is switched on infinitely slowly.

The above ideas can be extended to excited states of a harmonic oscillator. The nth eigenfunction of Ĥ(0) is given
in terms of Hermite polynomials according to the expression

Ψ(0)
n (x) =

(
mω0

πℏ22n(n!)2

) 1
4
e−

mω0
2ℏ x2Hn

(√
mω0
ℏ

x
)

(2.2.6)

The corresponding density matrix is

⟨x′| ρ̂n|x
′′⟩ =

(
mω0

πℏ22n(n!)2

) 1
2
e−

mω0
2ℏ (x′2+x′′2)Hn

(√
mω0
ℏ

x′
)

Hn

(√
mω0
ℏ

x′′
)

(2.2.7)

and its Wigner transform is

W(0)
n (x0, p0) =

1√
2πℏ

(
mω0

πℏ22n(n!)2

) 1
2

e−
mω0
2ℏ x20

∫
e−

mω0
8ℏ Δx20Hn

(√
mω0
ℏ

(
x0 +

1
2

Δx0
))

× Hn

(√
mω0
ℏ

(
x0 −

1
2

Δx0
))

e−i p0ℏ Δx0 dΔx0 (2.2.8)
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Rescaling the coordinates as before, i.e., introducing x = x0/α (thus Δx = Δx0/α) and p = αp0,

W(0)
n (x0, p0) =

1√
2πℏ

(
mαω0

πℏ22n(n!)2

) 1
2

e−
mαω0
2ℏ

x20
α

∫
e−

mαω0
8ℏ

Δx20
α Hn

(√
mαω0
ℏ

(
x0√
α
+

1
2

Δx0√
α

))
× Hn

(√
mαω0
ℏ

(
x0√
α
− 1

2
Δx0√
α

))
e−i

√
αp0
ℏ

Δx0√
α d

Δx0√
α

=
1√
2πℏ

(
mω

πℏ22n(n!)2

) 1
2

e− mω
2ℏ x2 ×

∫
e− mω

8ℏ Δx2Hn

(√
mω
ℏ

(
x+ 1

2
Δx
))

× Hn

(√
mω
ℏ

(
x− 1

2
Δx
))

e−i pℏΔx dΔx (2.2.9)

The last expression is recognized as Wn(x, p), the Wigner function for the Hamiltonian of frequency ω = αω0.

2.2.2 Semiclassical eigenstates

Next, consider the “primitive” Wentzel-Kramers-Brillouin (WKB) approximation to the wavefunction of a one-
dimensional anharmonic Hamiltonian,

ψWKB(x) =
e i
ℏ
∫ √

2m(E−V(x))dx√
2m (E − V(x))

(2.2.10)

Evaluating the Wigner integral, Equation 2.1.1, in the limit ℏ → 0 via the stationary phase method, and using
p
(
x+ Δx

2

)
+ p

(
x− Δx

2

)
= 2p(x), one finds that the Wigner density within the “primitive” WKB approximation

has the form

δ
(
p−

√
2m (E − V(x))

)
√

2m (E − V(x))
(2.2.11)

i.e., the Wigner density is located near the energy shell. For a bound potential, the WKB wavefunction is a linear
combination of the “primitive” wavefunctions. In this case, the Wigner density has been shown to be oscillatory near
the phase space ridge specified by the energy boundary.35

Consider again a point (x0, p0) at the energy eigenvalue of the zeroth order Hamiltonian Ĥ(0) (for example the
harmonic approximation to the potential of Ĥ). Under the classical force from Ĥ(0), the trajectory launched from
this point traverses the energy boundary p(x)2 = 2m(E − V(x)), tracing out a closed curve of area equal to the
action S(0)n =

(
n+ 1

2

)
ℏ that specifies the eigenstate. Upon switching on the perturbation Ĥ − Ĥ(0) adiabatically,

the trajectory deforms to the energy shell of the full Hamiltonian, preserving the value of the action. By virtue of the
semiclassical Wigner transform, Equation 2.2.11, it follows that the end point of this trajectory will again specify a
point on the Wigner density ridge.

Based on the above ideas, we suggest that the adiabatic switching process from the Wigner density of a reason-
able zeroth order Hamiltonian should yield a good approximation to the Wigner distribution of the corresponding
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eigenstate of an anharmonic target system. We point out that the adiabatic switching procedure cannot account
for subtle quantum mechanical features of the distribution, such as the small shift of the maximum away from the
location of the potential minimum which is often observed in the ground state of asymmetric anharmonic systems.

2.2.3 Finite temperature

Last, consider the case of finite temperature. Again, we start with a simple zeroth order Hamiltonian Ĥ(0), for which
the Boltzmann density is

ρ̂(0) =
(

Z(0)
)−1

e−βĤ(0)
, (2.2.12)

and consider its spectral expansion in terms of its energy eigenstates,

ρ̂(0) =
(

Z(0)
)−1∑

n

e−βE(0)n

∣∣∣Ψ(0)
n

⟩⟨
Ψ(0)

n

∣∣∣ . (2.2.13)

To motivate the procedure, we express the Wigner transform of this density in terms of the Wigner transforms
of the individual eigenstates,

W(0)(x0, p0) =
(

Z(0)
)−1∑

n

e−βE(0)n W(0)
n (x0, p0). (2.2.14)

Imagine carrying out the adiabatic switching procedure separately for each eigenstate. Upon switching on the
perturbation Ĥ−Ĥ(0) adiabatically, the phase space points x0, p0 distributed according to W(0)

n will evolve to points
x, pwith distribution that corresponds (approximately) to Wn. Thus, the adiabatic switching procedure described so
far will evolve Equation 2.2.14 to the distribution(

Z(0)
)−1∑

n

e−βE(0)n Wn(x, p). (2.2.15)

However, the Wigner transform of the target density,

ρ̂ = Z−1e−βĤ (2.2.16)

is given by the expression

W(x, p) = Z−1
∑
n

e−βEnWn(x, p). (2.2.17)

One observes that the Wigner densities Wn resulting from the adiabatic switching procedure need to be weighed
by the Boltzmann factors corresponding to energies of the full Hamiltonian, yet, according to Equation 2.2.15, the
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adiabatic switching trajectories carry the weights that correspond to the energies of the zeroth order Hamiltonian.
To correct this, we need to readjust the density at the point (x, p) reached by each trajectory.

The easiest procedure for achieving this task is to include the following classical Boltzmann rescaling factor:

fCBR
(
E(x, p), E(0)(x0, p0)

)
= e−β(E(x,p)−E(0)(x0,p0)). (2.2.18)

If many quantum states are occupied at a given temperature, the density argument given in Equation 2.2.18
leads to state occupations consistent with the Boltzmann distribution of the target Hamiltonian. One notices that
Equation 2.2.18 does not account for the ratio of the partition functions Z(0)

Z , because the partition functions are not
readily available. However, this ratio is a constant and is conveniently accounted for by normalization. The adiabatic
switching method with this classical rescaling factor is denoted by ASW/CBR.

However, the classical weight rescaling procedure as specified in Equation 2.2.18 has no information about
the zero-point energy. Hence, it would fail as the temperature approaches zero. In this case, the density opera-
tor approaches the ground eigenstate, which is adiabatically transformed correctly without adjustment of trajectory
weights. Clearly, the reason for the failure of the classical Boltzmann weight prescription is energy quantization. In
the absence of information about the level spacings of the target system, one can approximately remedy this situation
by introducing a rescaling factor that depends on the system’s ZPE, which is often available for the zeroth order as
well as the target Hamiltonian. The expression for the Wigner density of a harmonic oscillator,

Wharm(x, p) = (ℏπ)−1 tanh
(
ℏωβ

2

)
e− tanh( ℏωβ

2 )
(

mωx2
ℏ + p2

mωℏ

)

= (ℏπ)−1 tanh
(
ℏωβ

2

)
e− tanh(βE0) E(x,p)

E0 , (2.2.19)

suggests that the proper rescaling factor has the form

exp

(
− tanh (βE0)

E(x, p)
E0

+ tanh
(
βE(0)

0

) E(0)(x, p)
E(0)
0

)
(2.2.20)

Thus the adiabatic switching procedure with the ZPE-based rescaling factor (ASW/ZPE) produces (apart from
a normalization factor) the exact Wigner density at all temperatures in the case of a harmonic potential. In the limit
of high temperature, βE0 ≪ 1, this expression reverts to the classical rescaling factor, Equation 2.2.18, which is
correct for any Hamiltonian. Since, most potentials become nearly harmonic at low temperatures, we expect the
ZPE-based rescaling procedure to be accurate at low temperatures and also high temperature for anharmonic sys-
tems. Thus, the largest errors are expected at intermediate temperatures for systems where the energy level spacings
of the target Hamiltonian deviate significantly from the harmonic structure. Our numerical tests on strongly an-
harmonic systems indicate that the ZPE-based procedure is quite accurate at all temperatures. Further, these results
(presented in Section 2.3) suggest that the simpler classical rescaling procedure yields very satisfactory results under
most conditions of practical interest, i.e., systems with many degrees of freedom, where full evaluation of the Wigner
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integral, Equation 2.1.1, is impractical. These systems have a high density of states at typical temperatures so that the
classically derived scaling factor is sufficiently accurate.

To summarize the procedure, the Wigner density of the target system is obtained from adiabatically transforma-
tion of a zeroth order Wigner density with weight adjustment,

W(x, p) = NW(0)(x0, p0)f (E(x, p), E(x0, p0)) , (2.2.21)

where the weight rescaling factor is given by the classical or the ZPE form, and N is a normalization constant. Since
the Wigner density is usual generated for the purpose of calculating time-dependent averages of the type

⟨A⟩t =
∫∫

dx0 dp0 W(x0, p0)A(xt, pt)∫∫
dx0 dp0 W(x0, p0)

, (2.2.22)

the normalization factor is evaluated concurrently with the dynamical average.
Quasiclassical methods are often concerned about the inconsistency of generating the initial density by quantum

mechanical procedures (whenever this task is feasible) and carrying out the dynamics via classical trajectories, as
the quantized distributions are not invariant under classical propagation.36,37 By its nature, the adiabatic switching
construction of the Wigner distribution guarantees its invariance under classical dynamics. This desirable feature
ensures exact preservation of thermodynamic properties.

2.3 Application to model systems

In this section, we present numerical examples that illustrate the procedure described in Section 2.2

2.3.1 One-dimensional anharmonic oscillator

In the first example, we choose the potential

V(x) = x2 − 0.2x3 + 0.015x4. (2.3.1)

The zeroth order system is chosen as the harmonic oscillator of frequency ωh =
√

2. Figure 2.3 shows the
(renormalized) Wigner function produced via the adiabatic switching method, both with classical and with ZPE
rescaling, at various temperatures. At each chosen temperature, we present the obtained phase space distribution,
along with the position and the momentum distributions,

Pp(x) =
∫

dpW(x, p), Px(p) =
∫

dxW(x, p). (2.3.2)

These results are compared to accurate calculations generated via a basis set calculation and to the classical Boltz-
mann distribution.
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In spite of the very large anharmonicity, it is seen that the adiabatic transform reproduces the Wigner function
rather faithfully at all temperatures. It is particularly encouraging that both the classical and the ZPE weight rescaling
factors produce accurate results even far from their optimal regimes. The only observable flaw is the absence of the
shift in the maximum of the phase space distribution towards the right of the potential minimum, which is seen in
the low temperature distributions obtained by a basis set calculation. This is so because the highest density contours
of the Wigner function correspond to trajectories with energies near the potential minimum.

To quantify the respective accuracy attained by the two weight rescaling factors, we show in Figure 2.4 the vari-
ance of the position space distribution as a function of temperature. The simple adiabatic switching with classical
rescaling is seen to produce quantitative results at all but the lowest temperatures. The adiabatic switching procedure
with ZPE rescaling is quantitatively accurate at all temperatures. The importance of the rescaling factor becomes
apparent by presenting the raw adiabatic switching results. It is seen that in the absence of the weight rescaling, the
method fails to produce accurate results at all but the lowest temperatures.

−2 −1 0 1 2 3

x

−3

−2

−1

0

1

2

3

p

Classical Boltzmann

−2 −1 0 1 2 3

x

−3

−2

−1

0

1

2

3

p

Basis set

−2 0 2 4 6

x

0.0

0.2

0.4

0.6

0.8

1.0

P p
(x
)

Position distribution

−2 −1 0 1 2 3

x

−3

−2

−1

0

1

2

3

p

ASW/CBR

−2 −1 0 1 2 3

x

−3

−2

−1

0

1

2

3

p

ASW/ZPE

−5.0 −2.5 0.0 2.5 5.0

p

0.0

0.2

0.4

0.6

P x
(p
)

Momentum distribution

(a) ℏωβ = 3
√

2

Figure 2.3: 2D histograms of the phase space density, along with the position (top) and momentum (bottom) dis-
tribution, obtained by classical Boltzmann (top left, violet line), basis set calculations (top right, black line), ASW
with classical rescaling (bottom left, blue markers), ASW with ZPE rescaling (bottom right, red markers).
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Figure 2.3: continued
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Figure 2.3: continued

Lastly, we demonstrate the time invariance of the distribution generated via the adiabatic switching procedure
in Figure 2.5, which shows the distribution initially and after classical propagation over 10, 100 and 1000 periods.
Since no change of distribution takes place, thermodynamic properties are conserved. This is further illustrated in
Figure 2.6, where we plot the Wigner approximation of expectation value of the x̂2 operator as a function of time.

⟨
x2(t)

⟩
≈
∫∫

dx0 dp0 W (x0, p0) x2t (2.3.3)

We compare the results obtained from the ASW distribution with those from the exact basis set calculation. While
the latter varies with time, the approximate result is invariant. This is because the ASW method acts on entire classical
tori, keeping them intact.

2.3.2 Multidimensional system-bath

Finally, we use the adiabatic switching procedure to generate the Wigner function and dynamics for a harmonic
system coupled to a dissipative bath. The Hamiltonian has the form

Ĥ = Ĥ(0) −
∑
j

cĵsx̂j (2.3.4)
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Figure 2.4: Position variance for one-dimensional anharmonic system. Solid black line: basis set calculation. Solid
green line: classical Boltzmann results. Blue circles: ASW with classical rescaling. Red circles: ASW with ZPE
rescaling. Gray circles: adiabatic switching method without rescaling

Ĥ(0) =
p̂2s

2m
+

1
2
mΩ2̂s2 +

∑
j

p̂2j
2m

+
1
2
mω2j x̂2j (2.3.5)

where m = 1, Ω = 2. The frequencies and the system-bath coupling coefficients are collectively specified by the
spectral density.38 We use the Ohmic form with an exponential cutoff,

J(ω) = π
2
ℏξω exp

(
− ω
ωc

)
(2.3.6)

with a cutoff frequency ωc = 1.25Ω. The bath was discretized using 60 oscillators with frequency chosen according
to the logarithmic discretization of the spectral density39 with ωmax = 4ωc. The calculation was performed at four
parameter sets, for which the system dynamics changes from weakly damped to near-monotonic decay.

Monte Carlo sampling32 was used to generate phase space points distributed according to the analytic expres-
sion for the 122-dimensional Wigner density. The system-bath coupling was switched on adiabatically over a time
period of around 32 oscillations. Trajectory weight rescaling was performed using the classical Boltzmann-weighted
procedure.

Once the Wigner distribution was constructed, dynamical results were obtained by continuing the trajectories
under forces specified by the system-bath Hamiltonian. We report the real part of the position correlation function
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of the system.

C(t) = ⟨s(0)s(t)⟩ (2.3.7)

obtained from the Wigner function according to the classical procedure

Re C(t) ≈
∫∫

ds0 dps,0
∏
j

∫∫
dxj,0 dpj,0 W

(
s0, ps,0,

{
xj,0, pj,0

})
s0s(t) (2.3.8)

Exact results were obtained analytically.
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Figure 2.7: Position correlation function of a harmonic oscillator coupled to a harmonic bath. Black solid line: exact
quantum mechanical results. Dashed blue line: classical trajectory results with initial conditions sampled from the
Boltzmann density. Red markers: classical results with initial conditions sampled from the Wigner density generated
by the adiabatic switching procedure with classical Boltzmann rescaling.
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Figure 2.7 shows the adiabatic switching Wigner results, along with the exact quantum mechanical results for this
Hamiltonian. Also shown are the results obtained by approximating the Wigner function by the classical Boltzmann
phase space density. It is seen that the Boltzmann density severely underestimates the magnitude of the correlation
function because of its neglect of ZPE. Even though some of the calculations were performed at a very low tem-
perature with respect to the frequency of the system (and majority of the bath oscillators), the classical Boltzmann-
weighted procedure produced excellent results. This is so because a large number of degrees of freedom leads to a
high density of states. These findings suggest that the simple adiabatic switching procedure is sufficiently accurate
for polyatomic systems.

2.4 Discussion and concluding remarks

The idea of adiabatic switching, which follows from the adiabatic theorem of classical mechanics, is very old.33 More
recently, adiabatic switching was formulated as a trajectory-based procedure for generating semiclassical energy eigen-
values.34 Even though the idea is strictly valid only when the state of interest is associated with a torus in the full phase
space of the system, numerical studies34 have shown the method to be quite robust even in the presence of chaotic
dynamics. However, practical issues are often encountered due to separatrix crossing or when resonant states are
present; thus, special care must be taken to choose the initial Hamiltonian in a way that avoids such crossings when-
ever possible.40–42 Adiabatic switching has been applied to calculate vibrational energies in molecules with several
degrees of freedom.43–45

The adiabatic switching procedure described in this chapter is a simple approximate but quite accurate procedure
for generating the Wigner transform of the density operator that is valid for pure states or at finite temperature.
Because the target density is the Boltzmann operator (or, at zero temperature, the ground state), all degenerate states
are to be included, and thus resonant states do not present a problem. Even though it is conceivable that the Wigner
density of a strongly anharmonic system may have small negative parts at zero temperature, we have not encountered
this situation in any of the strongly anharmonic systems we investigated. At finite temperatures, we expect any small-
area negative regions of individual eigenstates to be washed out by the Boltzmann averaging procedure; thus, we do
not anticipate the Wigner distribution generated by a positive zeroth order density to lack important structure.

The adiabatic switching based method of generating the Wigner distribution is very easy to implement, as it re-
quires only classical trajectory integration without additional information of potential derivatives. Each trajectory
employed in the adiabatic switching procedure can subsequently continue to be propagated in time under the full
Hamiltonian to yield dynamic information. The Wigner distribution produced through the adiabatic switching
method is invariant under classical propagation, preserving thermodynamic averages. Our numerical tests suggest
that the adiabatic switching method is also quite accurate under a variety of conditions. Thus, the method is ideally
suited for quasiclassical trajectory calculations and also for calculating the phase space in quantum-classical calcula-
tions.
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Chapter 3

Adiabatic switching in normalmode coordinates

3.1 Introduction

In Chapter 2, we described a method for obtaining an approximation to the Wigner distribution by using the classical
adiabatic switching theorem. The theorem itself states that under an adiabatically changing Hamiltonian, the closed
orbits or tori deform in a manner so as to keep the action a constant of motion. Since the classical action is closely
linked with quantum numbers in quantum mechanics, it should be expected that through adiabatic switching one
can estimate through classical trajectories, information about the quantum states.34,44,46 This method has been used
to calculate semiclassical quantum eigenstates. However, here we are interested in calculating the Wigner transform
for the density operator,5 given by

W(x0, p0) =
1√
2πℏ

∫ ∞

−∞

⟨
x0 + 1

2Δx
∣∣ ρ̂0∣∣x0 − 1

2Δx
⟩
e−

ip0.Δx
ℏ dΔx (3.1.1)

In this chapter, we apply the ASW method to calculate the thermal properties of a Hamiltonian based on a
normal mode coordinate Hamiltonian for formaldehyde by Romanowski et al.46 We changed the potential because
there were regions of space where the potential reported46 is unbound. We also explore in depth the time evolution of
the ASW distribution, and calculate spectra from the time correlation functions. We also discuss the energy spectrum
as obtained from the AS method for semiclassical eigenstates.

3.2 Adiabatically-switchedWigner density in normal mode coordinates

Consider a molecular Hamiltonian expressed in terms of n normal mode coordinates, which has the general form

Ĥ = Ĥ0 + V̂ (3.2.1)

where

Ĥ0 =

n∑
i=1

1
2
p̂2i + fiiq̂2i , V(q) =

n∑
i,j,k

fijkq̂iq̂jq̂k +
n∑

i,j,k,l

fijklq̂iq̂jq̂kq̂l. (3.2.2)
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Here fii = 1
2ω

2
i , where ωi are the normal mode frequencies, and fijk and fijkl are cubic and quartic anharmonicity

coefficients, respectively, obtained from the potential function fit. Since the Hamiltonian is expressed in normal
modes, the quadratic terms are diagonal. Thus, the normal mode representation gives rise to a convenient zeroth order
Hamiltonian whose Wigner density is analytically known. At a temperature T = 1

kBβ (where kB is the Boltzmann
constant), the Wigner function corresponding to H0 is given by the expression

W0 (q, p) = (ℏπ)−n
n∏

j=1

tanh
(

1
2
ℏωjβ

)
exp

(
tanh

(
1
2
ℏωjβ

)(ωjq2j
ℏ

+
p2j
ℏωj

))
(3.2.3)

The ASW density is obtained through the following procedure. Phase space coordinates are sampled from the
zeroth Wigner density via a Monte Carlo32 random walk. Classical trajectories are launched with initial conditions
obtained from the sampled phase space points, while the Hamiltonian is slowly changed from H0 to the full H over
a time length τ using a switching function s(t), ie

Ĥ(t) = Ĥ(0) + s(t)V̂ (3.2.4)

where s(0) = 0 and s(τ) = 1. Various forms of the switching function may be used. The calculations reported in
the next section used the form43

s(t) = t
τ
− 1

2π
sin
(

2π t
τ

)
(3.2.5)

According to the classical adiabatic theorem, a trajectory that lies on a phase space torus evolves in such a manner
so as to maintain a constant action, as long as the anharmonic terms are switched on infinitely slowly. However, the
energy of the trajectory changes during the adiabatic switching process. To account for the change in the Boltzmann
population, we adjust the weight of each trajectory by a rescaling factor, f, ie.

W (q, p) = NW(0) (q0, p0) f
(
E(0), E

)
(3.2.6)

where N is a normalization factor that does not need to be determined. In particular, we have shown1 that the ZPE-
rescaling factor, Equation 2.2.20 leads to an excellent approximation of the Wigner density. Here E(0) (q0, p0) is the
initial energy of the classical trajectory with phase space coordinates (q0, p0) sampled from the Wigner distribution
corresponding to the harmonic reference Hamiltonian. E (q, p) is the energy reached at the end of the adiabatic
switching process, and E(0)

0 and E0 are the ZPE of the reference and the full Hamiltonians, respectively. At high
temperatures, Equation 2.2.20 becomes the ratio of the classical Boltzmann factors at the initial and final energies,
ensuring the correct high temperature limit of the Wigner scaling factor for the harmonic oscillator. This leads to the
classical Boltzmann rescaling factor, Equation 2.2.18.1 If the Hamiltonian is sufficiently quadratic near the potential
minimum, this procedure results in an ASW distribution which faithfully resembles the Wigner phase space density
of the full Hamiltonian.
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Calculation of the ZPE, while possible (e.g. via quantum Monte Carlo methods), adds an extra layer of sophisti-
cation. We would like to see if we can avoid this extra computation. Typical molecular systems are nearly harmonic
at the energy of the ground vibrational state. In such situations, the harmonic ZPE provides a simple and sufficiently
accurate approximation to E0. If the harmonic approximation to the ZPE is not adequate, it may be improved (with
minimal computational cost) by adding the diagonal anharmonicity to harmonic reference Hamiltonian. For the
calculations presented in this chapter, the use of the harmonic ZPE in the rescaling factor was sufficiently accurate.

A general issue with quasiclassical propagation methods is the inconsistency between the initial quantum density
and the classical dynamics that follows. This inconsistency manifests itself in the temporal invariance of the thermal
distributions and thermodynamic quantities. Improved dynamical procedures that partially overcome this issue are
available, although such schemes are computationally expensive. In this regard, a significant benefit of the ASW is
that the obtained phase space density remains (by construction) invariant. We demonstrate this property for the
multidimensional system studied here.

3.3 Application to molecular model with six normal modes

In this section, we apply the ASW to a model based on the ab-initio quartic potential energy surface developed by
Romanowski et al.46 for the formaldehyde molecule. The normal mode frequencies are 2937 cm−1, 1778 cm−1,
1544 cm−1, 1188 cm−1, 3012 cm−1 and 1269 cm−1 respectively. Unfortunately, the quartic fit to the potential
is unbound and thus ill-behaved at finite temperatures, as it leads to unstable trajectories. We thus modified the
potential (primarily the quartic terms) to a confined form, for which the trajectories are stable and bound even at
very high temperatures, ensuring that the magnitudes of the coefficients and the coupling terms remain similar. As
expected the confining modification led to small upward shifts of the energy levels. Using the adiabatic switching
method (which is numerically exact for the ground state energy), we found the the ZPE was increased by 4% and
the energy of the first excited state by nearly 5%. The full Hamiltonian has the form given in Equation 3.2.1 and
Equation 3.2.2 with n = 6 and the force constants are given in Table 3.1.

The anharmonic terms of the Hamiltonian were switched on according to Equation 3.2.5 over a time period of
τ = 2 ps. The switching time was chosen to ensure convergence at the highest temperature and kept fixed for all the
results reported. We note that much shorter switching times could have been chosen at lower temperatures.

3.3.1 Equilibrium Properties

To assess the accuracy of the ASW density, we first compare various equilibrium properties to accurate results ob-
tained via PIMC calculations and also against those obtained within the harmonic approximation at various temper-
atures. Figure 3.1 and Figure 3.2 show the marginal distributions

Pi (qi) =
∞∫

−∞

dq1 . . .
∞∫

−∞

dqi−1

∞∫
−∞

dqi+1 . . .

∞∫
−∞

dqn
∞∫

−∞

dp1 . . .
∞∫

−∞

dpn W (q1, . . . , qn, p1, . . . , pn) (3.3.1)
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Table 3.1: Force constants (in atomic units) for the modified bound model of the formaldehyde normal mode vibra-
tions.

i, j, k, l force constant i, j, k, l force constant i, j, k, l force constant

1 1 8.95641 × 10−05 1 2 2 2 6.06809 × 10−10 2 3 3 3 5.79834 × 10−11

2 2 3.28072 × 10−05 1 2 2 3 3.49433 × 10−09 2 3 4 4 8.16788 × 10−10

3 3 2.47445 × 10−05 1 2 3 3 3.41881 × 10−09 2 3 5 5 2.49993 × 10−08

4 4 1.46576 × 10−05 1 2 4 4 3.99302 × 10−09 2 3 5 6 8.88722 × 10−09

5 5 9.41724 × 10−05 1 2 5 5 1.23419 × 10−08 2 3 6 6 1.92595 × 10−09

6 6 1.67271 × 10−05 1 2 5 6 4.33096 × 10−08 3 3 3 3 3.01839 × 10−11

1 1 1 1.58395 × 10−06 1 2 6 6 1.98986 × 10−09 3 3 4 4 2.82284 × 10−10

2 2 2 −3.09488 × 10−07 1 3 3 3 8.19983 × 10−10 3 3 5 5 2.08768 × 10−08

3 3 3 −7.42473 × 10−09 1 3 4 4 3.47055 × 10−09 3 3 5 6 2.63248 × 10−09

1 1 1 1 1.64404 × 10−08 1 3 5 5 1.24585 × 10−08 3 3 6 6 1.54438 × 10−09

1 1 1 2 1.75202 × 10−09 1 3 5 6 7.06454 × 10−08 4 4 4 4 7.72218 × 10−10

1 1 1 3 4.35259 × 10−10 1 3 6 6 2.71959 × 10−09 4 4 5 5 2.78328 × 10−08

1 1 2 2 5.11727 × 10−09 2 2 2 2 2.09690 × 10−09 4 4 5 6 3.41463 × 10−10

1 1 2 3 1.84464 × 10−08 2 2 2 3 2.29151 × 10−09 4 4 6 6 1.43632 × 10−09

1 1 3 3 1.54362 × 10−08 2 2 3 3 1.57200 × 10−09 5 5 5 5 2.03858 × 10−08

1 1 4 4 2.35793 × 10−08 2 2 4 4 5.30463 × 10−10 5 5 5 6 4.41000 × 10−09

1 1 5 5 1.13248 × 10−07 2 2 5 5 8.45341 × 10−09 5 5 6 6 2.01654 × 10−08

1 1 5 6 9.64337 × 10−10 2 2 5 6 1.88770 × 10−09 5 6 6 6 7.36786 × 10−10

1 1 6 6 1.84492 × 10−08 2 2 6 6 1.00897 × 10−10 6 6 6 6 6.16225 × 10−10

of the normal modes as well as the probability distribution of the total potential energy,

Ppot (E) =
∞∫

−∞

dq1 . . .
∞∫

−∞

dqn

∞∫
−∞

dp1 . . .
∞∫

−∞

dpn W (q1, . . . , qn, p1, . . . , pn) δ (E − V (q1, . . . , qn)) (3.3.2)

at 300K. All the vibrational modes of this molecule are relatively cold at room temperature (ℏωiβ > 5 for all i).
As a result, the normal mode distributions shown in Figure 3.1 are Gaussian-like and in good agreement with those
obtained from the harmonic approximation to the Wigner density. Anharmonicity leads to small deviations from
the harmonic results. Quantum ZPE effects are very prominent at this temperature. The marginal distributions and
potential energy distributions obtained from classical Boltzmann density are much narrower and shifted compared
to the PIMC results. As seen in Figure 3.1 and Figure 3.2, the ASW density does an excellent job of capturing these
ZPE effects and the small anharmonic corrections.

While neither the original nor the modified potential surface are suitable for high-temperature calculations, the

29



−30 −20 −10 0 10 20

q1

0

1

2

3

4

5

6

7

P 1
(q

1)
×10−2

−20 0 20 40

q2

0

1

2

3

4

5

P 2
(q

2)

×10−2

−40 −20 0 20 40

q3

0

1

2

3

4

5

P 3
(q

3)

×10−2

−40 −20 0 20 40

q4

0

1

2

3

4

P 4
(q

4)

×10−2

−20 −10 0 10 20

q5

0

1

2

3

4

5

6

7

P 5
(q

5)

×10−2

−40 −20 0 20 40

q6

0

1

2

3

4

P 6
(q

6)

×10−2

Figure 3.1: Marginal distributions of the six normal modes at 300K. At this temperature ℏωminβ = 5.70 and
ℏωmaxβ = 14.4. Blue lines: harmonic Wigner. Black lines: PIMC results. Red markers: ASW results.
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Figure 3.2: Potential energy distribution function at 300K. Blue dashed line: harmonic Wigner. Black line: PIMC
results. Red markers: ASW results.

modified potential offers a convenient model for investigating the accuracy of various approximations over a wide
range of temperatures. In particular, anharmonicity effects are very prominent at high temperatures, both in the
diagonal terms and also in the mode-mode coupling parts of the potential. The results of this comparison have
important implications for the performance of these approximate methods on large molecules containing low fre-
quency vibrations, which are highly excited at physiological temperatures and often strongly anharmonic. Figure 3.3
and Figure 3.4 show the normal mode distributions at a temperature for which ℏωminβ = 0.11 and ℏωmaxβ = 0.27.
The accurate distributions obtained from PIMC calculations are strongly skewed at this temperature and resemble
closely the classical Boltzmann distributions. Not surprisingly, the harmonic approximation leads to poor results
in this case. The ASW procedure again leads to results that are practically indistinguishable from those obtained
through the numerically exact PIMC methodology.

In order to quantify the accuracy of the ASW distribution over a broad range of temperatures, we report the
Hellinger distance of the ASW marginal distribution of each mode from that given by the PIMC calculations, given
by

gASWi =

1 −
∞∫

−∞

√
PASW
i (qi) PPIMC

i (qi) dqi

 1
2

(3.3.3)

The Hellinger distance is a measure of the similarity of two probability distributions. The measure is zero for iden-
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Figure 3.3: Marginal distributions of the six normal modes at a high temperature such that ℏωminβ = 0.11 and
ℏωmaxβ = 0.27. Blue lines: harmonic Wigner. Black lines: PIMC results. Red markers: ASW results.
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Figure 3.4: Potential energy distribution function at the temperature specified in Figure 3.3. Blue dashed line: har-
monic Wigner. Black line: PIMC result. Red markers: ASW results.

tical distributions and unity for pairs of distributions that do not overlap. In Figure 3.5, we compare the Hellinger
distance of the ASW distribution from the PIMC result against the Hellinger distance ghari of the harmonic Wigner
density and that of the classical Boltzmann density, gcli . Not surprisingly, the error of the harmonic approximation
to the Wigner density increases monotonically with temperature, while the classical Boltzmann density fails at the
low temperatures. The Hellinger distance of the ASW density remains smaller than 0.03 over the entire tempera-
ture range considered, including low temperatures with large ZPE effects and high temperatures where anharmonic
potential regions are probed.

Last, we use the Wigner distribution to obtain the expectation values of the squares of the normal mode coordi-
nates,

⟨
q2i
⟩
=

∞∫
−∞

dq1 . . .
∞∫

−∞

dqn
∞∫

−∞

dp1 . . .
∞∫

−∞

dpn W (q1, . . . , qn, p1, . . . , pn) q2i (3.3.4)

Figure 3.6 shows the percentage error of ⟨q2i ⟩ at various temperatures. It is seen that the harmonic approximation
grows steeply with temperature. The error resulting from the ASW distribution remains small at all temperatures,
exhibiting a broad maximum at intermediate temperatures, where the method is known to have the worst perfor-
mance.

33



103

T(K)

0.0

0.1

0.2

0.3

0.4

0.5

gA
SW

i
vs
gh

ar i
an

d
gcl i

mode 1
mode 2
mode 3
mode 4
mode 5
mode 6

Figure 3.5: Helinger distances of the position distributions of the various modes with PIMC distributions as a func-
tion of temperature. Markers: ASW density, solid lines: harmonic approximation to the Wigner density. Dashed
lines: classical Boltzmann density.

3.3.2 Dynamical properties

As discussed earlier, the main appeal of the Wigner density is its use for generating initial conditions for quasiclassical
or semiclassical trajectory simulations. In the last part of this section, we study the evolution of the ASW density
under classical dynamics, as well as the time-dependent observables and the resulting frequency-domain spectra.

First we examine the temporal invariance of thermodynamic quantities. Figure 3.7 shows the average potential
energy as a function of time at two temperatures. It is seen that this quantity remains constant, as the ASW density re-
mains invariant under classical propagation. This stability, a consequence of the classical procedure used to generate
this phase-space density, is an appealing feature of the ASW scheme from the perspective of quasiclassical dynam-
ics calculations, which prevents spurious oscillations of time-dependent observables. We note again that the exact
Wigner function remains invariant only under fully quantum mechanical propagation, exhibiting spiral fluctuations
during classical evolution. Figure 3.7 also shows that the average potential energy arising from the harmonic-based
Wigner density exhibits significant oscillations during classical trajectory propagation.

Time propagation is often used to generate spectra. Quantum ZPE effects are very important if the forces on the
classical trajectories are obtained from ab initio electronic structure calculations. Thus the use of a quantized phase
space distribution is critical in this task. Below we report the quasiclassical time autocorrelation functions for the six
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normal modes of the modified formaldehyde potential.

Gk(t) =
∞∫

−∞

. . .

∞∫
−∞

∏
i

dqi(0) dpi(0) W (q1(0), . . . , qn(0), p1(0), . . . , pn(0)) qk(0)qk(t) (3.3.5)

along with the corresponding mode-specific spectra given by the Fourier transform of these correlation functions,

Ck(ω) =
1√
2π

∞∫
−∞

Gk(t) exp (iωt) dt . (3.3.6)

Figure 3.8 shows the mode-specific spectra obtained from the quasiclassical autocorrelation function Equation 3.3.5
at 3156 K. In addition, Figure 3.8 shows the quantum mechanical spectra within the harmonic approximation, and
also with the diagonal anharmonicity terms included (obtained from one-dimensional basis set calculations). The
one-dimensional anharmonic spectra consist of delta functions (which have been given very small widths for visual
clarity) whose peaks exhibit small, primarily blue shifts from the harmonic frequencies, which arise from the quartic
potential terms.

A fully quantum mechanical calculation of the correlation function with all six coupled degrees of freedom would
be illuminating but is rather challenging. However, we have been able to obtain accurate energy eigenvalues for sev-
eral low-lying states via the original semiclassical adiabatic switching method.33,34,40–42 The transition frequencies
obtained from these values are shown in Figure 3.9. These transition frequencies exhibit additional blue shifts in
comparison with those obtained from the calculations that account only for diagonal anharmonicity, a consequence
of confining quartic terms in the mode-mode potential interactions. The spectral peaks obtained from the quasi-
classical correlation functions with the ASW phase space density correlate well with the transition frequencies cor-
responding to the full six-dimensional potential. In addition, the ASW spectra are broadened. This broadening is
an intrinsic feature of quasiclassical correlation functions, which eventually decay to zero without being able to ac-
count for recurrences associated with quantum interference. In very small systems of one or two degrees of freedom,
the absence of recurrences and resulting spectral broadening tend to lead to significant discrepancies from the fully
quantum mechanical results. However, the rapidly growing number of transitions in polyatomic molecules leads
to very long recurrence times and densely packed spectral lines that are discernible only via high-resolution spectro-
scopic tools. In such situations quasiclassical calculations tend to produce a low-resolution spectrum that can offer
adequate accuracy, provided that ZPE is properly accounted for in the phase space density that specifies trajectory
initial conditions. The results presented in this section suggest that the ASW procedure provides an excellent way of
achieving this quantization for molecular systems in the normal mode representation.
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Figure 3.8: Spectra for various modes at 3156 K obtained by Fourier transforming the position autocorrelation func-
tion. Red line: spectra from classical trajectories sampled from the ASW distribution and propagated under the
full potential. Blue line: quantum mechanical results in absence of anharmonic mode coupling terms. Green line:
spectrum arising from the harmonic part of the Hamiltonian
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3.4 Discussion and concluding remarks

In this chapter, we have demonstrated how to use the ASW method to generate the Wigner phase space density
for a molecule with several degrees of freedom whose Hamiltonian is given in normal mode coordinates. This is
the simplest application of the method. Starting from the decoupled normal mode Hamiltonian as the zeroth order
Hamiltonian, the trajectories are propagated under adiabatically transforming Hamiltonian to the final fully coupled
Hamiltonian. Because the ASW method is based on classical trajectories, it is important for the potential energy sur-
face to be bound over the energy regions sampled by the trajectories. This is not very limiting because the subsequent
trajectories used for quasiclassical simulations would of course be subject to the same constraints.

We also applied ASW to the problem at very high temperatures, to test how well it deals with cases where regions
of high anharmonicity are sampled. For small molecules of course such temperatures are unrealistic, but for large
floppy molecules, such anharmonic regions would be explored pretty regularly at physiological temperatures. We
show that ASW is able to reproduce the effects of anharmonicity very effectively, giving quantitative agreement with
fully converged PIMC results. We show the invariance of thermodynamic quantities when the dynamics is started
from the ASW distribution. This is not the case for the true Wigner density.

In Chapter 4, we show that the main ideas of ASW method carry over completely to the case of Cartesian co-
ordinates. There are a couple of subtleties that need to be taken care of. We deal with those issues and show the
applicability of ASW to an atomistic Hamiltonian.
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Chapter 4

Adiabatic switching inCartesian coordinates

4.1 Introduction

In the previous chapter, we used the ASW method to calculate the Wigner function for a Hamiltonian expressed
in the normal mode coordinates. While this is a common coordinate system in use, in today’s literature an increas-
ing number of potential energy surfaces are given in Cartesian coordinates. This encompasses both highly accu-
rate potential energy surfaces (PES) with sub-wavenumber accuracy, as well as molecular dynamical force fields like
CHARMM. Potentials like CHARMM that are fit to experiments rather than ab initio calculations have a limita-
tion. They cannot be used outside a very narrow range of parameters, whereas an ab initio PES is valid in the entire
range of interpolation and can be used at all temperatures if we can calculate the accurate thermal distributions. Cal-
culating the Wigner phase space distribution for a general multidimensional potential is in general difficult. With
ASW method, we want to demonstrate it is possible to calculate the Wigner function for the most general case. The
essential question becomes how to define a zeroth Hamiltonian. In Section 4.2, we discuss the implementation of
ASW in Cartesian coordinates, followed by an application of the method to the CHARMM force field of butyne
in Section 4.3.

4.2 ASW in Cartesian coordinates

The Hamiltonian for a CHARMM force field has the form

HCHARMM =

N∑
j

p⃗j .⃗pj
2mj

+

bond∑
j

1
2
kbj
(
bj − b̄j

)2
+

angle∑
j

1
2
kθj
(
θj − θ̄j

)2
+ non-bonded (4.2.1)

where p⃗j is the momentum of the jth atom, bj is the bond length of the jth bond, with a spring constant of kbj and
mean bond length of b̄j. θj is the jth angle with a mean of θ̄j and spring constant of kθj . Non-bonded interactions
include dihedral interactions and van der Waals interactions described by the Lennard-Jones potential.

This does not allow a very obvious choice for a zeroth Hamiltonian. So we consider the Hamiltonian obtained
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by the normal mode analysis of Equation 4.2.1 as the zeroth Hamiltonian

H0 =

3N−6∑
j=0

P2
j

2
+ fjjX2

j (4.2.2)

where
(

Xj, Pj
)

are the normal mode phase space point and N is the number of atoms.
The analytical Wigner function corresponding to H0 is sampled and trajectories are launched. These trajectories

are propagated under a time dependent Hamiltonian which slowly changes from H0 to HCHARMM over a switching
time of τ.

H(t) = (1 − s(t))H0 + s(t)HCHARMM (4.2.3)

where s(t) is the switching function. The trajectories are defined by Hamilton’s equations of motion

˙⃗q = (1 − s(t)) ∂
∂⃗p

H0

(
X⃗ (⃗q, p⃗) , P⃗ (⃗q, p⃗)

)
+ s(t) ∂

∂⃗p
HCHARMM (⃗q, p⃗)

˙⃗p = − (1 − s(t)) ∂
∂⃗q

H0

(
X⃗ (⃗q, p⃗) , P⃗ (⃗q, p⃗)

)
− s(t) ∂

∂⃗q
HCHARMM (⃗q, p⃗) (4.2.4)

where (⃗q, p⃗) is the Cartesian phase space point. We explicitly note the dependence of the equation of motion on the
two Hamiltonians. Notice that H0 and HCHARMM are not defined on the same spaces. H0 acts on the reduced di-
mensional space spanned by the normal mode coordinates, whereas HCHARMM is defined in the full 6N dimensional
Cartesian phase space. At every time point, there are two contributions to the forces on the atoms — one coming
from HCHARMM and the other coming from H0. So, there is a need to convert back and forth between the Cartesian
coordinates (⃗x, p⃗) and the normal mode coordinates at every time step. This dimension reduction makes the corre-
sponding coordinate transformation unstable. Consider a Hamiltonian which does not couple the rotational and
vibrational degrees of freedom. In a Watson Hamiltonian, this would correspond to the absence of coriolis terms.
Different rotational structures with the same vibrational configuration should have the same normal mode geometry
and energy. This however does not happen if the Hessian matrix is naïvely diagonalized after removal of center of
mass motion. The rotational degrees of freedom need to be projected out by going into an Eckart frame of reference.
Ideally a Hamiltonian that does not have rotational terms should not lead to changes in the rotational configuration,
but in practice even in such cases, numerical instabilities couple the rotational and vibrational degrees of freedom.

The decoupling of the rovibrational degrees of freedom cannot be done completely for a general Hamiltonian.
So, the goal is to minimize the coupling between the two. The rotational matrix, C, which transforms from the
laboratory frame to the Eckart frame is determined by a method outlined by Czakó and Bowman.47 It satisfies the
following relation ∑

j

mj⃗reqj ×
(

C⃗rj − r⃗eqj
)
= 0 (4.2.5)
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Figure 4.1: Transfer function for ASW

where r⃗eqj is the equilibrium configuration on the basis of which the normal mode analysis would be done. Basically
this is a method of bringing the molecule to a configuration that is the closest to the “equilibrium” configuration
through just a rotation. Thus, if the molecule has just rotated, all the normal mode coordinates obtained by diago-
nalizing the Hessian in this Eckart frame, would be 0.

The calculations reported in Section 4.3 use a switching function of the form

s(t) = t
τ
− 1

2π
sin
(

2π t
τ

)
(4.2.6)

which is a sigmoidal transfer function which goes from 0 to 1 over the time period of τ. The graph of s(t)with respect
to t is shown in Figure 4.1.

We use ZPE-rescaling to reweigh the trajectories. So, finally the ASW procedure can be summarized as

W (⃗q, p⃗) = NW(0)
(

X⃗0 (⃗q0, p⃗0) , P⃗0 (⃗q0, p⃗0)
)
f
(
E(0), E

)
(4.2.7)

fZPE
(
E(0), E

)
= exp

− tanh (βE0)
E (⃗q, p⃗)

E0
+ tanh

(
βE(0)

0

) E(0)
(

X⃗, P⃗
)

E(0)
0

 (4.2.8)

As discussed in Section 3.2, due to the added cost of calculating the ZPE for multidimensional anharmonic systems,
we approximate it by the harmonic zero-point energy. Here we sample normal mode phase space points and propa-
gate them under a time dependent Hamiltonian in Cartesian coordinates.
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Figure 4.2: Potential energy distribution for butyne at 298 K (left) and 400 K (right). Blue line: Classical Boltzmann.
Black line: PIMC. Red markers: ASW

4.3 Application to butyne

Consider the CHARMM force field for but-2-yne. The full Hamiltonian has the form Equation 4.2.1. The non-
bonded interactions consist of van der Waals forces given by the Lennard-Jones form and Coulombic electrostatic
interactions. All parameters have been obtained from the CHARMM force field. “Scaled 1-4” interaction scheme
was used for the simulations. The anharmonicity in the Hamiltonian comes from angular interaction terms, the van
der Waals and Coulombic potential terms. The bonded interactions are described by purely harmonic terms. The
adiabatic switching done over a period of τ = 2 ps gives converged results for the potential energy distribution. The
effect of quantization is already involved in the parameterization of the CHARMM force fields, so, the quantization
that we get from ASW would in fact give incorrect results. However here we are using this as a test bed to make sure
that we can get results that agree with fully quantum PIMC results even for atomistic Hamiltonians in Cartesian
coordinates. We study the thermodynamics at two temperatures 298 K and 400 K.

First consider the potential energy distribution at the two temperatures in Figure 4.2. As expected the ASW re-
sults match the fully converged PIMC results quantitatively. We note that the classical Boltzmann result undergoes
a large change as the temperature increases from 298 K to 400 K. The average potential energy for the classical distri-
bution shifts from 2.26 kcal mol−1 to 4.60 kcal mol−1, and the standard deviation of the distribution also increases
from 2.01 kcal mol−1 to 2.70 kcal mol−1. This clearly shows the lack of a quantization of energy levels in classical
Boltzmann thermodynamics. The energy increases monotonically with temperature. However for both the PIMC
and ASW distributions, we notice that the potential energy distributions hardly undergo any change. This only hap-
pens when the temperature changes are much less than the difference between the energies of the eigenstates, and
the populations on these states do not change significantly. In this case the entire population is mostly stuck in the
vibrational ground state. The ZPE pushes the average potential energy up by almost 20 kcal mol−1. The spread is
also significantly more than that in pure classical Boltzmann statistics.
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Figure 4.3: C C bond length distribution at 298 K (left) and 400 K (right). Blue line: Classical Boltzmann.
Black line: PIMC. Red markers: ASW
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Figure 4.4: C C bond length distribution at 298 K (left) and 400 K (right). Blue line: Classical Boltzmann.
Black line: PIMC. Red markers: ASW
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Figure 4.5: C H length distribution at 298 K (left) and 400 K (right). Blue line: Classical Boltzmann. Black
line: PIMC. Red markers: ASW

Next, consider the carbon-carbon single and triple bond lengths. The corresponding distributions are given
in Figure 4.3 and Figure 4.4 respectively. We notice that the average bond length remains the same irrespective of
the sort of distribution we are looking at. However it is the spread that changes vastly between the classical and the
quantum distributions. Both the quantum distributions are much broader, and their standard deviations remain
constant over the temperature change. However, the classical Boltzmann distribution is much narrower at both
temperatures, for both the bond length distributions, and its standard deviation increases with increasing tempera-
ture. For the C H bond as given in Figure 4.5, similar conclusions are obvious. However, here the ASW results
do not match the PIMC results quantitatively. This is a result of anharmonicity, and increasing the switching time
would make convergence better. Because of the softness of the potential, converging the potential energy distribution
within acceptable levels does not converge the C H bond length distribution.

4.4 Discussion and concluding remarks

In this chapter, we have demonstrated the use of ASW for calculating the Wigner function for a molecule described
by Hamiltonian in Cartesian coordinates. Thus, this method works for molecular systems described in both normal
mode and Cartesian coordinates. We compared the potential energy distribution to exact PIMC calculations and the
classical Boltzmann distribution. We note that ASW reproduces the PIMC results quite faithfully despite presence
of anharmonicities. Bond vibrations are typically cold at room temperatures and we see that both in the ASW and
PIMC results, the temperature dependence is largely absent. Thus ASW manages to capture ZPE effects fully.

Because ASW requires only localized knowledge of the PES, it is a very attractive possibility to use ASW with
ab initio potential energy surfaces. The resulting simulation would have a very wide regime of applicability. The only
restriction to such a simulation would be the ab initio electronic structure calculation which can be easily converged
to high accuracy at any given geometry. Additional limitations on the types of interactions would be absent. All
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relevant interactions can be incorporated fully quantum mechanically. Hence, it is an exciting prospect to couple
this method to density functional theory (DFT) or other electronic structure methods which can give us the locally
relevant Born-Oppenheimer surface on the fly.

Lastly, since the ASW procedure may be applied without modification to generate a quantized phase space dis-
tribution for a solvent as required in QCPI. If classical force fields are not available, ab initio evaluation of forces is
the only option. In such cases, if the ZPE effects are important, the Wigner function would be very important. ASW
may be used in such cases to calculate the phase space distribution of the solvent.

However, despite being a simple and attractive method, ASW is still approximate and results cannot be systemat-
ically improved. So, in Chapter 5, we discuss a method which would enable us to calculate the exact Wigner function
of any operator, and would even allow us to simultaneously equilibrate a fully quantum system and a quasiclassical
solvent.
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Chapter 5

Path integralWignermethod

5.1 Introduction

We have till now been discussing an approximate method for calculating the Wigner distribution. There are many
other methods for approximating the distribution with their individual limitations and strengths. However, there is
no numerically exact method reported till now, which can be systematically converged to the required accuracy. Now
we present a method for evaluating the Wigner transform for any arbitrary operator using path integrals. This path
integral Wigner (PI-Wigner) method mitigates the sign problem inherent in a multidimensional Fourier transform
to a certain extent, making it possible to numerically simulate the distribution. We will also be exploring the salient
features of the method and how it converges.

The PI-Wigner method for a general thermalized operator is derived in Section 5.2. In Section 5.3, we present
numerical examples to illustrate the method. An in-depth study of the convergence and salient features is done
using one-dimensional potentials at various temperatures. Multidimensional examples are done for two cases. We
apply this method for studying the equilibrium position-position correlation function of a harmonic oscillator that
is coupled to a bath of harmonic oscillators in Section 5.3.2. Thereafter, we show the results for the marginal thermal
position distributions of formamide in Section 5.3.3.

5.2 Path integralWigner (PI-Wigner) method

Consider a general operator Ω̂ whose Wigner function, ΩW(q, p) is required. Calculating the Wigner function is
difficult because of the multidimensional Fourier transform involved. However, it is comparatively easier to calculate
the Husimi representation11 of Ω̂, ΩH(q, p), where the phase is bound.

ΩH(q, p) =
⟨
gq,p
∣∣Ω̂∣∣gq,p⟩ (5.2.1)

where
∣∣gq,p⟩ are the coherent states defined by the position space wavefunctions,

⟨
q
∣∣gq0,p0⟩ = ( γπ) 1

4
exp
(
− γ

2
(q− q0)2 +

i
ℏ
p0 (q− q0)

)
(5.2.2)
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We give the expression in one dimension. The generalization to the multidimensional case is straightforward. To
compute the Wigner function, its relationship48 with the Husimi representation may be used

ΩW(q, p) = exp
(
−1

4

(
1
γ

∂2

∂q2
+ γ ∂2

∂p2

))
ΩH(q, p) (5.2.3)

Solving Equation 5.2.3 exactly is equivalent to solving the full Wigner transform and hence computationally infeasi-
ble for multidimensional systems. However, it has been shown by Thoss et al.49 that the first order truncation of this
relationship is equivalent to the derivative forward-backward semiclassical dynamics method of Shao and Makri.9

Consider the case of a symmetrically thermalized operator, Ω̂
β
= e−βĤ/2Ω̂e−βĤ/2. Rewriting Equation 5.2.3

for this case, we get

Ωβ
W(q, p) = exp

(
−1

4

(
1
γ

∂2

∂q2
+ γ ∂2

∂p2

)) ⟨
gq,p
∣∣e−βĤ/2Ω̂e−βĤ/2

∣∣gq,p⟩ (5.2.4)

To get a path integral representation, we split the Boltzmann operator at an inverse temperature of β = 1
kBT into

N imaginary time slices with Δβ = β
2N .

e−βĤ/2 =
(
e−ΔβĤ

)N
(5.2.5)

and by subsequent application of the Trotter formula for sufficiently small Δβ, we get

e−βĤ/2 =
(
e−ΔβT̂/2e−ΔβV̂e−ΔβT̂/2

)N
(5.2.6)

where T̂ and V̂ are the kinetic energy and potential energy operators respectively. Now we can write down the path
integral representation for the Husimi function, Ωβ

H(q, p).

Ωβ
H(q, p) =

⟨
gq,p
∣∣e−βĤ/2Ω̂e−βĤ/2

∣∣gq,p⟩
=

∫
. . .

∫
dx1 . . . dx2N+2

⟨
gq,p
∣∣e−ΔβT̂/2∣∣x1⟩ e−ΔβV(x1)

× ⟨x1|e−ΔβT̂|x2⟩ e−ΔβV(x2) ⟨x2|e−ΔβT̂|x3⟩ . . . ⟨xN|e−ΔβT̂/2|xN+1⟩

× ⟨xN+1|Ω̂|xN+2⟩ ⟨xN+2|e−ΔβT̂/2|xN+3⟩ e−ΔβV(xN+3) . . .

×
⟨
x2N+2

∣∣e−ΔβT̂/2∣∣gq,p⟩ (5.2.7)

By doing the Gaussian integrals, we get closed form expressions for the factors involving coherent states50

⟨
x2N+2

∣∣e−ΔβT̂/2∣∣gq,p⟩ = ( γπ)1/4
√

2m
2m+ ℏ2Δβγ
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× exp
(
− 2m

2m+ ℏ2Δβγ

(
γ
2
(q− x2N+2)

2
+

Δβ
4m

p2 + ip (q− x2N+2)

))
(5.2.8)

Thus, the coherent state matrix element for the symmetrically thermalized operator A becomes in path integral rep-
resentation

Ωβ
H (q, p) =

( γ
π

)1/2( 2m
2m+ ℏ2Δβγ

)∫
· · ·
∫

dx1 . . . dx2N+2 e−ΔβV(x1)

× ⟨x1|e−ΔβT̂|x2⟩ e−ΔβV(x2) ⟨x2|e−ΔβT̂|x3⟩ . . . ⟨xN|e−ΔβT̂/2|xN+1⟩

× ⟨xN+1|Ω̂|xN+2⟩ ⟨xN+2|e−ΔβT̂/2|xN+3⟩ e−ΔβV(xN+3) . . .

× exp
(
− 2m

2m+ ℏ2Δβγ

(
γ
2

(
(q− x1)2 + (q− x2N+2)

2
)
+

Δβ
4m

p2 + ip (x1 − x2N+2)

))
(5.2.9)

Ωβ
W (q, p) =

( γ
π

)1/2( 2m
2m+ ℏ2Δβγ

)∫
· · ·
∫

dx1 . . . dx2N+2 e−ΔβV(x1)

× ⟨x1|e−ΔβT̂|x2⟩ e−ΔβV(x2) ⟨x2|e−ΔβT̂|x3⟩ . . . ⟨xN|e−ΔβT̂/2|xN+1⟩

× ⟨xN+1|Ω̂|xN+2⟩ ⟨xN+2|e−ΔβT̂/2|xN+3⟩ e−ΔβV(xN+3) . . .

× exp
(
− 1

4γ
∂2

∂q2

)
exp
(
− 2m

2m+ ℏ2Δβγ

( γ
2

)(
(q− x1)2 + (q− x2N+2)

2
))

× exp
(
− γ

4
∂2

∂p2

)
exp
(
− 2m

2m+ ℏ2Δβγ

(
Δβ
4m

p2 + ip (x1 − x2N+2)

))
(5.2.10)

The separation of the q and the p part of the derivatives is possible because q and p over here are not operators
but just coherent state label variables. So, there are no commutation issues to be taken care of. We directly solve the
exponentials of the derivatives exactly because they are Gaussian functions. Consider a general exponential operator,
e−η∂2y acting on a general Gaussian function, ψ(y) = e−ay2+by, where a > 0, b ∈ C. Then ψ in the reciprocal space
is given as

ψ(k) = 1√
2π

∫
dy ψ(y) eiky = 1√

2a
exp

{
(b+ ik)2

4a

}

e−η∂2y ψ(y) = 1√
2π

∫
dk ψ(k) e−η∂2y e−iky =

1√
2π

∫
dk ψ(k) eηk

2
e−iky

=
1√
4πa

e b2
4a

∫
dk e−(

1
4a−η)k2 e−i(y− b

2a )k

=
e b2
4a√

1 − 4ηa
exp

{
− a
(1 − 4ηa)

(
y− b

2a

)2
}
, if 4ηa < 1 (5.2.11)
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Applying Equation 5.2.11 to Equation 5.2.10, we can simplify the expressions to the following

exp
(
− 1

4γ
∂2

∂q2

)
exp
(
− 2m

2m+ ℏ2Δβγ

( γ
2

)(
(q− x1)2 + (q− x2N+2)

2
))

=

√
2m+ Δβγ

Δβγ
exp

(
−2m

Δβ

(
q− x1 + x2N+2

2

)2
)

exp
(
− mγ

2 (2m+ Δβγ)
(x1 − x2N+2)

2
)

(5.2.12)

exp
(
− γ

4
∂2

∂p2

)
exp
(
− 2m

2m+ ℏ2Δβγ

(
Δβ
4m

p2 + ip (x1 − x2N+2)

))
=

√
2m+ Δβγ

2m
exp
(
−Δβ p2

2m
− ip (x1 − x2N+2)

)
exp
(

mγ
2 (2m+ Δβγ)

(x1 − x2N+2)
2
)

(5.2.13)

Notice that the Gaussian spring-like term holding x1 close to x2N+2 in Equation 5.2.12 is exactly canceled by its
reciprocal present in Equation 5.2.13. This is what leads to unbound phase causing the “sign” problem in multidimen-
sional systems. However, because of the nature of the Boltzmannized operator, we know that the end points of the
path integral necklace cannot be very far from each other. So, we expand the inverse Gaussian in Equation 5.2.13 in a
truncated polynomial upto a finite order, nx. We introduce a new notation preempting our next step and consolidate
all the terms into

Ωβ
W,nxX,∞P (q, p) =

(
2m
πΔβ

)1/2 ∫
· · ·
∫

dx1 . . . dx2N+2 e−ΔβV(x1)

× ⟨x1|e−ΔβT̂|x2⟩ e−ΔβV(x2) ⟨x2|e−ΔβT̂|x3⟩ . . . ⟨xN|e−ΔβT̂/2|xN+1⟩

× ⟨xN+1|Ω̂|xN+2⟩ ⟨xN+2|e−ΔβT̂/2|xN+3⟩ e−ΔβV(xN+3) . . .

× exp
(
− mγ

2 (2m+ Δβγ)
(x1 − x2N+2)

2
)

exp

(
−2m

Δβ

(
q− x1 + x2N+2

2

)2
)

× exp
(
−Δβ p2

2m

) nx∑
j=0

1
j!

(
mγ

2 (2m+ Δβγ)
(x1 − x2N+2)

2
)j

+O
(
(x1 − x2N+2)

2nx+1
)

× exp (ip (x1 − x2N+2)) (5.2.14)

In Equation 5.2.14, we notice that there is a Gaussian factor holding x1 close to x2N+2. This Gaussian factor
decays much faster than any finite ordered polynomial would. Therefore, (x1 − x2N+2) is bound, as is p. Therefore
the phase is bound. However, notice that at low temperatures, we are still sampling a high temperature classical
momentum distribution, which is much broader than the true quantum distribution. The latter is obtained because
of the phase cancellation. So, this additional broadening can lead to extra “sign” problem. To take care of that we
multiply and divide by a more “correct” momentum factor and expand whatever remains in a truncated polynomial,
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Figure 5.1: Schematic diagram for the coordinate space
part of the sampling function in Equation 5.2.15. Wavy
lines are the springs. Different spring constants (noted on
top of the springs) are denoted by different types of wind-
ings of the springs. Red spring also has the polynomial cor-
rection factor associated with it.

leading to

Ωβ
W,nxX,npP (q, p) =

(
2m
πΔβ

)1/2 ∫
· · ·
∫

dx1 . . . dx2N+2 e−ΔβV(x1)

× ⟨x1|e−ΔβT̂|x2⟩ e−ΔβV(x2) ⟨x2|e−ΔβT̂|x3⟩ . . . ⟨xN|e−ΔβT̂/2|xN+1⟩

× ⟨xN+1|Ω̂|xN+2⟩ ⟨xN+2|e−ΔβT̂/2|xN+3⟩ e−ΔβV(xN+3) . . .

× exp
(
− mγ

2 (2m+ Δβγ)
(x1 − x2N+2)

2
)

exp

(
−2m

Δβ

(
q− x1 + x2N+2

2

)2
)

× exp
(
−β p2

2m

) np∑
j=0

1
j!

(
(β− Δβ) p

2

2m

)j

+O
(
p2np+1)

×

 nx∑
j=0

1
j!

(
mγ

2 (2m+ Δβγ)
(x1 − x2N+2)

2
)j

+O
(
(x1 − x2N+2)

2nx+1
)

× exp (ip (x1 − x2N+2)) (5.2.15)

where nx and np are two different truncation parameters in terms of which convergence needs to be tested. All but
the last line of Equation 5.2.15 is used as the sampling function. The pure phase part is treated as the Monte Carlo
integrand. In Equation 5.2.15, we have used the momentum part of the classical Boltzmann distribution as the “ref-
erence” distribution, however the method can be written in terms of any other “reference” momentum distributions.
A very lucrative alternative, in cases where the harmonic fit is a good approximation to the full Hamiltonian, is the
momentum part of the harmonic Wigner function. In Figure 5.1, we show a schematic for the sampling function
of the position coordinates. There are subtle differences from the standard quantum-classical isomorphism. For in-
stance, not all the “springs” have the same spring constant. This is indicated in the different colors and shapes of the
springs used. For the rest of the chapter, we use WnxX,npP for the case where Ω̂ = Î , the identity operator.
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5.3 Applications to model systems

In this section, we present some numerical tests of the PI-Wigner method.

5.3.1 One-dimensional anharmonic oscillators

We demonstrate the method on two different one-dimensional potentials

V1(x) =
1
2
ω2x2 − 0.2x3 + 0.015x4 and V2(x) =

1
2
ω2x2 − 0.1x3 + 0.1x4 (5.3.1)

where ω =
√

2. In Figure 5.2, we present the phase space distribution at different temperatures for both potentials.
We compare the position and the momentum distributions to basis set and classical Boltzmann distribution

Pp(x) =
∫

dpW(x, p), Px(p) =
∫

dxW(x, p). (5.3.2)
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Figure 5.2: Phase space density, with the position (top) and momentum (bottom) distribution, obtained by W0X,∞P
(top left, red markers), W3X,∞P (top right, gray markers), W3X,0P (bottom left, blue markers), W3X,4P (bottom right,
violet markers). Solid black line: basis set calculation, dashed blue line: classical Boltzmann density.
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Figure 5.2: continued
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Figure 5.2: continued

We see in Figure 5.2 that the PI-Wigner method converges for over a large range of temperatures to the correct
distribution. At low temperatures, the number of beads required to minimize the Trotter error increases, which
leads to larger phase. In these examples we show that we have sufficiently reduced the phase so that the distribution
converges well even for 24 beads. Previously we had discussed the inability of the ASW method to capture delicate
quantum effects like the slight shift of the distribution maximum. The PI-Wigner method, being a numerically exact
method is able to accurately capture all these effects. It is also interesting to note the effect of momentum truncation.
It makes the momentum distribution more classical-like. Thus we see that at low temperatures the momentum dis-
tribution corresponding to W3X,0P resembles the classical momentum distribution. However it has no effect on the
position distribution. We demonstrate the effect of the momentum truncation by looking at the joint probability
distribution of momentum and phase in Figure 5.3. Slices are taken along the Re phase = ±1 axis. The area under
the Re phase = −1 curve is a measure of the amount of sign problem. We notice that for W3X,∞P, the area is the
maximum as expected, and for W3X,0P it is the minimum. Also at low temperatures, even at converged levels of mo-
mentum truncation, the area under the Re phase = −1 curve is much smaller than that of W3X,∞P. This illustrates
the reduction of the “sign” problem for these two Hamiltonians.

53



Effect of momentum truncation on dynamics

It is also instructive to study the effect of momentum truncation on the dynamics. Of course for a one-dimensional
Hamiltonian, the effects of sign problem would be heavily muted, but there might be small indications of improve-
ment.

Consider the correlation function

Re ⟨p(0)p(t)⟩ =
∫∫

dx0 dp0 W (x0, p0) p0p(t) (5.3.3)

p(t) in Equation 5.3.3 is computed by propagating classical trajectories. In Figure 5.5 we compare the results using
W3X,∞P and W3X,4P with those obtained by doing classical propagation on the numerically exact Wigner distribu-
tion. 100000 Monte Carlo points were employed. We can clearly see that in the left panel, where the temperature is
slightly higher, there is not much difference between W3X,∞P and W3X,4P, however in the right panel, at ℏωβ = 5,
there is noticeable errors in the W3X,∞P calculations. These are absent in W3X,4P calculation. This is a very small
error that we are talking about. However, things get only worse as we go higher in dimensionality.
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Figure 5.3: 2D histograms of momentum vs the real part of the phase, along with a slice at Re phase = 1 (top) and
Re phase = −1 (bottom), obtained by W0X,∞P (top left), W3X,∞P (top right, black line), W3X,0P (bottom left, red
line), W3X,1P (blue line), W3X,2P (violet line), W3X,3P (gray line), W3X,4P (bottom right, yellow line).

54



−4 −2 0 2 4

p

−1.0

−0.5

0.0

0.5

1.0

R
ep

ha
se

W0X,∞P

−4 −2 0 2 4

p

−1.0

−0.5

0.0

0.5

1.0

R
ep

ha
se

W3X,∞P

−5 0 5

p

0

5

10

15

Re phase = +1

−4 −2 0 2 4

p

−1.0

−0.5

0.0

0.5

1.0

R
ep

ha
se

W3X,0P

−4 −2 0 2 4

p

−1.0

−0.5

0.0

0.5

1.0
R

ep
ha

se
W3X,4P

−5 0 5

p

0.00

0.02

0.04

0.06

0.08

0.10
Re phase = −1

(b) ℏωβ =
√

2, V1 potential using 3 beads

−4 −2 0 2 4

p

−1.0

−0.5

0.0

0.5

1.0

R
ep

ha
se

W0X,∞P

−4 −2 0 2 4

p

−1.0

−0.5

0.0

0.5

1.0

R
ep

ha
se

W3X,∞P

−5 0 5

p

0

5

10

15

20

Re phase = +1

−4 −2 0 2 4

p

−1.0

−0.5

0.0

0.5

1.0

R
ep

ha
se

W3X,0P

−4 −2 0 2 4

p

−1.0

−0.5

0.0

0.5

1.0

R
ep

ha
se

W3X,4P

−5 0 5

p

0.0

0.1

0.2

0.3

Re phase = −1

(c) ℏωβ = 5
√

2, V2 potential using 24 beads

Figure 5.3: continued
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Figure 5.5: Momentum correlation function for 1D anharmonic oscillator. Black solid line: classical propagation
of numerically exact Wigner distribution. Blue markers: classical propagation of W3X,∞P. Red markers: classical
propagation of W3X,4P. 100000 Monte Carlo points used in each case.
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5.3.2 Multidimensional system-bath

As the first example of a multidimensional problem, we use the PI-Wigner method to generate the Wigner function
and dynamics for a harmonic system coupled to a dissipative bath. The Hamiltonian has the form

Ĥ = Ĥ(0) −
∑
j

cĵsx̂j; Ĥ(0) =
p̂2s

2m
+

1
2
mΩ2̂s2 +

∑
j

p̂2j
2m

+
1
2
mω2j x̂2j (5.3.4)

where m = 1, Ω = 2. The frequencies and the system-bath coupling coefficients are collectively specified by the
spectral density.38 We use the Ohmic form,

J(ω) = π
2
ℏξω exp

(
− ω
ωc

)
(5.3.5)

with the cutoff frequency ωc = 1.25Ω. The bath was discretized using 24 oscillators with frequencies chosen ac-
cording to the logarithmic discretization of the spectral density39 with ωmax = 4ωc. We show the results of the
discretization with varying numbers of oscillators at different parameters by reporting the real part of the position -
position correlation function for the system, approximated by the classical Wigner procedure as

Re C(t) =
∫∫

ds0 dps,0
∏
j

∫∫
dxj,0 dpj,0 W

(
s0, ps,0,

{
xj,0, pj,0

})
s0 s(t) (5.3.6)

Comparisons with the classical results and the analytically solved quantum correlation function is shown in Fig-
ure 5.6. We see that at both the different coupling parameters, the PI-Wigner simulation at W2X,0P level agrees with
the true quantum results.
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Figure 5.6: Correlation function for a harmonic system coupled with a harmonic bath. Black solid line: Exact quan-
tum results. Blue line: Classical Boltzmann results. Red markers: W2X,0P. Left panel: ωc = 2.5, ξ = 0.5, β = 1
with 29 bath modes. Right panel: ωc = 2.5, ξ = 1, β = 1 with 24 bath modes.
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5.3.3 Quartic force field for formamide

As a final example, consider the ab initio quartic force field for the formamide molecule. The potential is calculated
using Gaussian09 at the level of Møller-Plesset (MP2) perturbation theory with aug-ccpvtz basis set. The Hamilto-
nian is in normal mode coordinates and of the following form

Ĥ = Ĥ0 + V̂ (5.3.7)

Ĥ0 =

n∑
i=1

p̂2i
2
+

1
2
fiiq̂2i +

1
6
fiiiq̂3i +

1
24

fiiiiq̂4i (5.3.8)

V̂ =
∑
i ̸=j ̸=k

fijkq̂iq̂jq̂k +
∑
i ̸=j

1
2
fiijq̂2i q̂j +

∑
i ̸=j ̸=k̸=l

fijklq̂iq̂jq̂kq̂l

+
∑
i ̸=j

(
1
6
fiiijq̂3i q̂j +

1
4
fiijjq̂2i q̂2j

)
+
∑
i ̸=j ̸=k

1
2
fiijkq̂2i q̂jq̂k (5.3.9)

There are no quadratic couplings between the coordinates because the Hamiltonian is in normal mode coor-
dinates, which diagonalize the harmonic terms. Here we report the thermal marginal distributions of the various
modes

Pi (qi) =
∞∫

−∞

dq1 . . .
∞∫

−∞

dqi−1

∞∫
−∞

dqi+1 . . .

∞∫
−∞

dqn
∞∫

−∞

dp1 . . .
∞∫

−∞

dpn W (q1, . . . , qn, p1, . . . , pn) (5.3.10)

obtained using the PI-Wigner method along with the corresponding PIMC results and the Wigner distributions
corresponding to the harmonic part of the Hamiltonian at room temperature (T = 300K).
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Figure 5.7: Marginal position distributions of the twelve normal modes of formamide at 300K. At this temperature
ℏωminβ = 0.64 and ℏωmaxβ = 18.06. Black solid line: fully quantum PIMC results. Blue dashed line: harmonic
Wigner distribution. Red markers: W2X,0P distribution.
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Figure 5.7: continued
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Figure 5.7: continued

Because of the difference in the diagonal parts of the Hamiltonian, different number of beads were used for the
different modes. The PI-Wigner distribution was calculated at the level of W2X,0P using the harmonic Wigner mo-
mentum distribution as a reference. We see as expected that the comparatively low frequency modes explore highly
anharmonic regions of the potential energy surface and thus show strong effects of anharmonicity. The number of
PIMC beads used is 420. The Fourier transform involved in calculating the Wigner distribution is, of course, carried
out over the 12 dimensional space spanned by the normal modes. The results, even at a relatively low order (W2X,0P),
match the exact PIMC results remarkably accurately.

5.4 Discussion and concluding remarks

In this final chapter of the part on Wigner functions, we have developed a very simple path integral method for
calculating the distribution corresponding to thermal operators. The PI-Wigner method is numerically exact. It
is heartening to see the sign problem mitigated to a sufficient extent to make it possible to calculate the full 24 di-
mensional Wigner distribution for formamide easily. It is easy to systematically converge the PI-Wigner method
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at increased computational cost. A few of the problems that plague the ASW method are alleviated here, since the
PI-Wigner method is numerically exact. Firstly, unlike ASW it does not require a good zeroth Hamiltonian. This
makes the current method extremely attractive for application to liquids and clusters, where it is difficult to define
a good zeroth Hamiltonian. Liquids prove to be additionally challenging to ASW because of the existence of in-
verted modes. We expect that the PI-Wigner method should work well in case of liquids too. Also, it can couple a
discrete quantum system with a bath with a Wigner phase space representation. We are in the process of applying
this method to clusters and quasi-classical liquids. Lastly, for quantum liquids, fermionic and bosonic exchanges
are important. These cannot be incorporated in the ASW method. We are also working on ways of extending the
PI-Wigner method to quantum fluids.
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Chapter 6

Non-equilibrium reactive flux

6.1 Introduction

This chapter is based on the paper, A. Bose and N. Makri, “Non-equilibrium reactive flux: A unified framework for
slow and fast reaction kinetics”, J. Chem. Phys. 147, 152723 (2017).

Reactive processes, such as charge transfer and barrier crossing, often occur on time scales that are much longer
than those associated with the ro-vibrational dynamics of the reactants. Rather than following the slow transfor-
mation of reactants to products it is advantageous in such cases to evaluate the reaction rate constant using the flux
formalism.2–13 The latter is based on equilibrium correlation functions that involve the reactive flux, and classical,
quantum mechanical, as well as semiclassical formulations are available. The main advantage of the flux correlation
function formalism is that it requires the dynamics to be followed only up to the “plateau time”, i.e., the time required
for initial transients to settle and the reactant population to enter its slow, exponential decay.

There are, of course, many cases of fast reactions characterized by low potential barriers, where there is no clear
separation of time scales. In such situations no plateau regime can be identified, thus the flux correlation function
formalism cannot be used to obtain the reaction rate. In some cases of ultrafast reactions, transient dynamics persists
almost until the reactant population attains its equilibrium value, causing strongly nonexponential kinetics for the
duration of the reaction. These situations require full simulation of the population dynamics. Since one does not
know a priori the applicability of the rate picture, one would typically attempt to infer the rate by evaluating the flux
correlation function. In the event this function does not appear to plateau, one would abandon this approach and
proceed to simulate the evolution of the reactant population.

Further, fully quantum mechanical calculations of condensed phase reactions are impractical, and one has to re-
sort to approximate methods. Quantum-classical approaches are particularly attractive, because classical mechanics
usually captures the dynamics of the quantum system’s environment with satisfactory accuracy, while offering linear
scaling. Several intuitive and efficient quantum-classical approximations are available for simulating state popula-
tions. However, equilibrium correlation functions require the evaluation of the Boltzmann operator for all inter-
acting degrees of freedom. Evaluation of this operator in a mixed quantum-classical representation presents a major
challenge, making quantum-classical methods not directly suitable to this task.

In this chapter, we propose a non-equilibrium, factorized reactant density formulation of the reactive flux, which
addresses both of the above issues. By removing the need for evaluating the Boltzmann density of the total Hamil-
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tonian, this formulation is easily amenable to quantum-classical treatments. In addition, the non-equilibrium flux
formulation directly yields the early-time transient dynamics and (when relevant) the rate coefficient associated with
long-time exponential decay. This allows for a characterization of slow or fast reaction kinetics from a single calcula-
tion. We emphasize that the non-equilibrium flux expression is not an approximation, and that, if evaluated exactly,
it yields the same reaction rate as the conventional equilibrium reactive flux formalism.

Section 6.2 describes the non-equilibrium reactive flux and its relation to population dynamics. The characteris-
tics of the non-equilibrium flux are illustrated through model calculations in Section 6.3.

6.2 Reactive flux with non-equilibrium initial conditions

We denote the reactant and product states collectively as |R⟩ and |P⟩ respectively. Miller has shown that the (forward)
rate constant for reactive processes in gas phase bimolecular collisions is given by the expression

kf = Z−1
R lim

t→∞
Tr
(

F̂ eiĤt/ℏ e−βĤ/2 ĥR e−βĤ/2 e−iĤt/ℏ
)

(6.2.1)

where β = 1/kBT is the inverse temperature, ZR is the partition function of the reactants, ĥR = |R⟩⟨R| is an operator
that projects onto reactants, and F̂ is the symmetrized flux operator,

F̂ =
i
ℏ

[
Ĥ, ĥR

]
. (6.2.2)

The dividing surface that separates reactants from products is perpendicular to the reaction coordinate, which
defines the “system” with Hamiltonian Ĥsys, while the remaining degrees of freedom constitute the “environment”,
defined by Ĥenv = Ĥ − Ĥsys − V̂int.

For typical barrier crossing processes in the condensed phase, where the reactant-product complex is character-
ized by a double well potential (or by two bound diabatic surfaces, as in electron transfer reactions), Equation 6.2.1
must be modified to

kf = Z−1
R Tr

(
F̂ eiĤt/ℏ e−βĤ/2 ĥR e−βĤ/2 e−iĤt/ℏ

)∣∣∣
t≈tplateau

(6.2.3)

where tplateau is the “plateau time”, when the initial transients have died out and the reactant population has just
entered the slow, exponential decay. Further, Equation 6.2.3 is valid under the assumption that all non-reactive intra-
well processes occur on a time scale much shorter than the time scale for completion of the reaction. This is often the
case, as typical potential barriers separating reactants and products are significantly larger than the thermal energy.
Under these conditions, the plateau time occurs relatively early, such that kftplateau ≪ 1. On a longer time scale, the
function inside the trace of Equation 6.2.3 is not constant but decays exponentially.

Rearranging the trace and exploiting the Hermitian character of the flux operator, Equation 6.2.3 can also be
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written in the form

kf = −Feq
(
tplateau

)
, (6.2.4)

where

Feq(t) = Z−1
R Tr

(
eiĤt/ℏ e−βĤ/2 ĥR e−βĤ/2 e−iĤt/ℏ F̂

)∣∣∣
t≈tplateau

(6.2.5)

Assuming that the coupling Vint between the system and the environment is diagonal in position, the flux operator
acts within the space of the system. Then Equation 6.2.5 can be rewritten in the form

Feq(t) = −Trsys
(
ρ̂redeq (t)F̂

)
(6.2.6)

where ρ̂eq(t) is the reduced density operator of the quantum system,

ρ̂redeq (t) = Trenv
(
e−iĤt/ℏ ρ̂eq(0)eiĤt/ℏ

)
, (6.2.7)

and the initial condition of the density is

ρ̂eq(0) = Z−1
R e−βĤ/2ĥRe−βĤ/2. (6.2.8)

According to Equation 6.2.6, the reaction rate is given by the (negative of ) the expectation value of the flux
operator in the plateau regime, with the initial density given by Equation 6.2.8.

Invoking Onsager’s ideas, we argue that (after the initial transients have settled) the decay of the expectation
value of the flux should approach its thermodynamic limit with the same rate, regardless of the intiial condition.
This invariance has been used to show the equivalence of several commony used rate expressions that involve dif-
ferent symmetrizations of the Boltzmann-transformed flux. In this work, we consider replacing Equation 6.2.8 by
a simpler factorized initial condition, which is physically meaningful and easier to evaluate. In particular, a factor-
ized initial condition would allow a fully quantum mechanical treatment of the reaction coordinate and a classical
(or quasiclassical) treatment of the environment by means of trajectories sampled from a phase-space distribution.
The particular form we choose is designed to mimic the early state of the reactive process of interest. We choose a
factorized initial condition that describes the isolated reactants,

ρ̂non-eq(0) = ĥR ⊗ e−βĤinit
env

Zinit
env

, (6.2.9)

where Ĥinit
env is the Hamiltonian for the degrees of freedom of the environment in (exact or approximate) equilibrium

with the system in the reactant state and Zinit
env is its partition function. In the particular case of an electron transfer

reaction, Ĥinit
env is the Hamiltonian for the solvent equilibrated with respect to the quantum state describing the elec-
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tron donor, thus the factorized density of Equation 6.2.9 describes the reactant state exactly in this case. We define
the expectation value of the flux, subject to this new, non-equilibrium initial density,

Fnon-eq(t) = −Trsys
(
e−iĤt/ℏ ρ̂rednon-eq(0)eiĤt/ℏF̂

)
= −Trsys

(
ρ̂rednon-eq(t)F̂

)
(6.2.10)

It is easy to see that

Fnon-eq(t) =
i
ℏ

Tr
(
e−iĤt/ℏ ρ̂non-eq(0)eiĤt/ℏ

[
Ĥ, ĥR

])
=

d
dt

ρRR(t), (6.2.11)

where

ρRR(t) = ⟨R| ρ̂rednon-eq(t)|R⟩ (6.2.12)

is the popualtion of the reactants with initial value equal to one, according to Equation 6.2.9. Thus Fnon-eq(t) is equal
to the time derivative of the reactant population at all times. Once the transients die out, the reactive process enters
the exponential decay regime, where the reactant population decays according to the form

ρRR(t)− ρRR(∞) =
(
ρRR
(
texp
)
− ρRR(∞)

)
e−(kf+kb)(t−texp), (6.2.13)

where texp indicates the onset of the exponential regime in the population dynamics and kf and kb are the forward
and backward rates. The time derivative of the reactant population is

d
dt

ρRR(t) = −
(
kf + kb

) (
ρRR
(
texp
)
− ρRR(∞)

)
e−(kf+kb)(t−texp). (6.2.14)

The time texp may be longer than the plateau time. However, as long as there is a separation of time scales, it is
much shorter than

(
kf + kb

)−1, thus Equation 6.2.14 will plateau. At the onset of the plateau regime, the reactant
population has not yet changed from its initial value, thus ρRR

(
tplateau

)
≈ 1. It follows that

Fnon-eq(texp) =
d
dt

ρRR(t)
∣∣∣∣
t=texp

= −
(
kf + kb

) (
1 − ρRR(∞)

)
= −kf (6.2.15)

where the last equality is a consequence of the detailed balance condition. Thus, if there is a separation of time
scales, the expectation value of the flux with the non-equilibrium initial condition corresponding to the reactant
density will plateau to the negative of the forward reaction rate constant. Thus, in line with the discussion of Craig et
al.,14 the equilibrium and the non-equilibrium flux expressions have the same plateau value (and subsequent decay),
although they are expected to differ at earlier times. The ability to use a factorized thermal density without affecting

70



the accuracy of the computed rate value is particularly useful in simulations employing quantum-classical methods.
Most importantly, the non-equilibrium flux expression with a factorized reactant density is particularly useful

in the case of electron transfer reactions, where Equation 6.2.9 provides an exact description of the reactive species
at the onset of the chemical process. Even when the lack of a clear separation of time scales causes a late onset of the
exponential regime, i.e., the absence of a plateau and/or nonexponential kinetics, the non-equilibrium flux can still
be employed to infer the evolving reactant population,

ρRR(t) = 1 +

t∫
0

Fnon-eq (t′) dt′. (6.2.16)

If the transient dynamics survive long enough for the reactant population to drop substantially from its initial
value, Equation 6.2.16 captures this early nonexponential dynamics faithfully, while the rate constant obtained from
Equation 6.2.15 (along with the backward rate, which is available through the detailed balance condition) can be
used to infer the subsequent population decay through an exponential function, i.e.,

ρRR(t) =


1 +

t∫
0

Fnon-eq (t′) dt′ t < texp

ρRR(∞) +
(
ρRR
(
texp
)
− ρRR(∞)

)
e−(kf+kb)(t−texp) t > texp

(6.2.17)

Given the intimate connection between the nonequilibrium flux and the population dynamics, an obvious ques-
tion is whether one could obtain the same information by computing the population and evaluating its time deriva-
tive numerically. The main problem with that approach is that it can be unstable, as numerical derivatives are very
sensitive to statistical noise. Since most simulation methods applicable to molecular/condensed phase systems em-
ploy Monte Carlo sampling,15 it is preferable to differentiate the population expression analytically. By contrast, the
integration procedure required for inferring the population from the non-equilibrium flux is stable. In fact integra-
tion tends to wipe out the effects of random noise that may be present in the derivative function.

As mentioned earlier, one of the difficulties associated with numerical evaluation of the equilibrium flux ex-
pressions is often the need to evaluate the Boltzmann operator in the appropriate representation. For example, if a
mixed quantum-classical approximation to the time evolution is adopted, one needs to obtain the Wigner quantized
phase space distribution16 for the environment degrees of freedom in equilibrium with the quantum mechanical re-
action coordinate. In the case of molecular systems with a well-defined harmonic zeroth order Hamiltonian, we have
shown that the Wigner function can be obtained approximately from adiabatically switched trajectories.17 However,
accounting for the interaction between classical and quantum degrees of freedom presents a challenge. On the other
hand, the use of a non-equilibrium flux expression with a factorized reactant density is easily amenable to a variety
of numerical treatments and is ideally suited to quantum-classical methods. Even when the factorized form is only
an approximation of the true reactant density, the procedure yields the exact rate. Additionally, when the density
factorization is exact, as in the case of the electron transfer, integration of the non-equilibrium flux yields the early
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population dynamics, which is crucial for a correct characterization of the reaction prior to the onset of exponential
kinetics and when a plateau cannot be identified.

6.3 Numerical examples

We illustrate the ideas presented in Section 6.2 with several numerical examples on model symmetric two-level sys-
tems (TLSs) coupled to harmonic dissipative environments. The TLS Hamiltonian is given by

Ĥsys = −ℏΩ (|R⟩⟨P|+ |P⟩⟨R|) , (6.3.1)

while the harmonic bath and the system bath interaction have the usual form,

Ĥenv =
∑
j

p̂2j
2mj

+
1
2
mjω2j q̂2j (6.3.2)

V̂int = −
∑
j

cjq̂j (|R⟩⟨R| − |P⟩⟨P|) . (6.3.3)

The bath is described by an Ohmic spectral density,18

J(ω) = π
2
ξℏω exp

(
− ω
ωc

)
, (6.3.4)

where ξ is the Kondo parameter and ωc is the “cutoff ” frequency, which corresponds to the maximum of Equa-
tion 6.3.4. The equilibrium flux was evaluated using the quasi-adiabatic propagator path integral19 (QuAPI) method-
ology of complex-time flux correlation functions.20,21 The non-equilibrium flux with a factorized initial condition
was obtained by propagating the reduced density matrix using the iterative decomposition of the QuAPI expres-
sion.22–24 The factorized initial condition is an exact description of the reactant species in the case of a TLS.

The parameters of the first example are chosen from earlier work,25 where the TLS coupling corresponds to a tun-
neling splitting of 2ℏΩ = 0.001 05 cm−1 and the bath cutoff frequency has the value 500 cm−1. These parameters
are characteristics of many proton transfer or isomerization reactions, where a relatively high potential barrier leads
to a small tunneling splitting, while the vibrational frequencies of the environment are much higher. Thus, there is a
clear separation of time scales and one expects a well-defined flux plateau.

The equilibrium and non-equilibrium flux functions are compared in Figure 6.1. It is seen that both functions
plateau in a fairly short time (of the order of the characteristic time scale ω−1

c of the environment degrees of freedom).
While the equilibrium flux appears to plateau somewhat earlier, as expected (given the equilibrium initial condition),
the flux with a factorized reactant density does not take much longer to reach its plateau. The short-time behavior
of the non-equilibrium flux differs somewhat, reflecting the true transient dynamics of the reactant population, and
the difference between the two forms increases with the system-bath coupling strength. We also report the rates of
this system at various temperatures and system-bath coupling strengths in Figure 6.2. The rate constants obtained
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Figure 6.1: Comparison of the equilibrium and non-equilibrium flux functions Equation 6.2.5 and Equation 6.2.10,
for the first dissipative TLS described in Section 6.3. The solid line shows the (negative of the) function with the
equilibrium initial condition, while the red markers show the (negative of the) flux with the initial condition given
by the reactant density.
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Figure 6.2: Consolidated rates using non-equilibrium flux. Red markers: ξ = 0.1, blue markers: ξ = 0.5, violet
markers: ξ = 1.5.

from the plateau values of both flux functions agree with the results of Topaler and Makri.25

The second model employs parameters encountered in some utrafast condensed phase electron transfer reactions.
Here the parameters are ωc = 2.5Ω, ℏωcβ = 0.5 and ξ = 1.2. Figure 6.3 shows the non-equilibrium flux as a
function of time, along with its time integral, which is seen to be in excellent agreement with the reactant population
obtained through the direct propagation of the reduced density matrix. The proximity of TLS and bath time scales
leads to rapid population decay. Figure 6.3(a) shows that the flux reaches a large negative value around ωct ≈ 1.
This region corresponds to an inflection point of the population, which shortly thereafter settles into an exponential
decay with a constant rate. However since the duration of the transient dynamics is not negligible compared to the
population decay time, the flux enters its exponential decay regime on the same time scale and thus does not display
a plateau.

As a third example, we discuss the quantum-classical path integral26–28 (QCPI) all-atom simulation of the ferrocene-
ferrocenium self-exchange electron transfer reaction in liquid hexane.29 This is an ultrafast reaction that completes in
a few picoseconds. In this case, the non-exponential transient dynamics persist until the reaction is nearly complete,
leading to much faster decay that the rate constant associated with the long-time exponential regime would seem to
predict.
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Figure 6.3: Non-equilibrium flux and population dynamics for the second dissipative TLS described in Section 6.3.
Black line: time integral of the non-equilibrium flux function. Red markers: evolution of the initial populated state
computed through propagation of the density matrix.

6.4 Discussion and concluding remarks

One of the flux formulations of reaction dynamics expresses the rate as the cross correlation function of a projector
and the flux operator, or equivalently as the expectation value of the reactive flux with respect to a symmetrically
“Boltzmannized” operator. These expressions involve the Boltzmann operator with respect to all degrees of freedom,
whose computation often presents challenges, in particular if mixed quantum-classical methods are to be employed.
To remove this obstacle, one would like to replace the Boltzmann operator by a factorized form, such that the quan-
tum system and its environment may be treated at different levels of approximation. However, such a modification
naturally leads to a different function.

Since a change of initial conditions does not affect the rate of approach to equilibrium, one may replace the
Boltzmann operator by a non-equiibrium form without affecting the plateau value of the flux. As long as the real
time dynamics is evaluated in a numerically exact manner, the non-equilibrium flux expression yields the exact value
of the rate constant, irrespective of any approximations made to the initial thermal density. This feature offers con-
siderable flexibility, allowing convenient approximations of the Boltzmann density without sacrificing accuracy in
the computed value of the reaction rate. This flexibility is particularly valuable in simulations employing quantum-
classical methods.

In particular, if the reactant density involves a single quantum state, as in the case of electron transfer reactions,
the factorized initial condition describes the true initial state of the reactant species and the flux expression gives
precisely the time derivative of the reactant population. Thus, in addition to its convenient factorized initial density,
this flux expression yields the short-time transient dynamics and through its plateau value the rate of exponential
decay, allowing characterization of slow or ultrafast reaction in a unified framework. The examples presented in
Section 6.3 illustrate different types of ultrafast dynamics where determination of the rate through the equilibrium
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flux may not be possible or where such a rate may not even be meaningful. The former happens when despite the
population following exponential decay for the greater part, the flux does not plateau, and the latter is a common
occurrence when the non-exponential population decay happens within a time that is shorter than the inverse of the
long-time rate.

As expected, the non-equilibrium flux exhibits more pronounced transients and may settle to its plateau value
somewhat slower compared to the equilibrium flux. However, the examples presented in Section 6.3 show that the
plateau time is still reached quite rapidly. This is to be expected even in the case of very slow processes, since the
plateau time of the non-equilibrium flux coincides with the onset of the exponential population decay, which occurs
very early (on the time scale of intra-well dynamics) compared to the time for completion of the reaction. Thus, the
use of the non-equilibrium flux expression does not require simulation of dynamics for very long times.

The non-equilibrium formulation of the reactive flux will facilitate simulations of fast and slow reactions in so-
lution or biological systems. A particularly attractive possibility is its evaluation using rigorous QCPI methodol-
ogy,26,27 which treates the interaction between the quantum system and its classical environment in full detail and
without approximation. Applications to charge transfer reactions are in progress.
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Chapter 7

Near equilibrium initial condition for rate
calculations usingQCPI

7.1 Introduction

Chemical reactions in condensed phase polar environments can often be very sluggish with extremely long non-
Markovian memories. Hence, following a reaction through to completion with methods for exact quantum dynamics
may well be infeasible. Rate theory provides a very convenient alternative for cases when the dynamics is well repre-
sented by a exponential decay, reducing the cost of the computation by orders of magnitude. Various approximate
and perturbative methods for calculating rates have been proposed, including the famous Marcus theory for the rate
of electron transfer.30,31 Expressions for exact quantum rates using thermal equilibrium flux correlation functions
exist which do not suffer from the problems of transition state theories and perturbative approximations.7,8

Calculating the flux correlation function using exact quantum dynamics for atomistic reactions is challenging.
Such reactions are generally treated under the mixed quantum-classical framework of methods, where the low di-
mensional reaction coordinates constitute a fully quantum mechanical system, and the remaining dimensions are
relegated to a classical solvent. This leads to an interesting problem — any thermal correlation function requires
estimation of a Boltzmannized operator, so we need to simultaneously equilibrate the quantum system with a quasi-
classical solvent. In the previous chapter, we have shown that this is not strictly necessary for a rate calculation as it is
independent of the initial condition. Various approximations to the initial density have been provided.32,33 We also
observe that simulation times required to reach the plateau of the flux function increases as the initial condition gets
farther from the equilibrium. We have proposed a fully non-equilibrium initial condition that is solely determined
by the physics of the system at hand in Chapter 6. This, of course, leads to longer simulation times, but also gives us
valuable insights into the transients.

In this chapter, we explore another initial condition which approximates the coupled thermal equilibrium. A
key feature in the methods which approximate the Boltzmannized initial condition32,33 is that they ignore the system
solvent coupling. This of course has the benefit of leading to very simple expressions, but it moves the initial condition
further away from the equilibrium in cases where the system is strongly coupled with the solvent. In fact strong system-
solvent couplings are the hallmark of slow condensed phase reactions where rate theory is most convenient because
of substantial reduction of simulation times. Our non-equilibrium method, though compatible with QCPI, may
prove to be less useful for such slow reactions. In Section 7.2, we derive a very simple expression for an approximate
initial density that couples the system and the bath. We show numerical examples and comparisons with the non-
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equilibrium method in Section 7.3.

7.2 Near equilibrium flux using QCPI

The QCPI formalism combines a fully quantum mechanical description of a low-dimensional “system” with a qua-
siclassical treatment of the system’s multidimensional environment or solvent in a rigorous manner. Suppose ŝ is
the position operator of the system, and q, p constitute the phase-space coordinate of the solvent. Then the total
Hamiltonian governing the dynamics has the form

Ĥ = Ĥ0 + Ĥenv (q, p) + V̂int (̂s, q, p) (7.2.1)

where

Ĥenv = T̂env (p) + V̂env (q) (7.2.2)

The time-dependent reduced density matrix, under QCPI, is then given by

ρred
(
s±N ;NΔt

)
=

∫
dq0 dp0 P (q0, p0) Q

(
q0, p0, s±N ;NΔt

)
(7.2.3)

where P is the phase-space density of the solvent and Q contains all the dynamical effects arising from the system-
solvent interaction, and is called the quantum influence function. It is calculated as a path sum over the system space

Q
(
q0, p0, s±N ;NΔt

)
=
∑
s±0

∑
s±1

. . .
∑
s±N−1

⟨
s+N
∣∣Ûref (NΔt, (N − 1)Δt; q0, p0)

∣∣s+N-1
⟩
. . .

×
⟨
s+1
∣∣Ûref (Δt, 0; q0, p0)

∣∣s+0 ⟩ ρred (s±0 ; 0
) ⟨

s−0
∣∣Û†

ref (Δt, 0; q0, p0)
∣∣s−1 ⟩ . . .

×
⟨
s−N−1

∣∣Û†
ref ((N − 1)Δt,NΔt; q0, p0)

∣∣s−N ⟩ exp
(
i
ℏ
φ
(
q0, p0,

{
s±j
}))

(7.2.4)

where φ is the solvent backreaction on the system that appears as a path-dependent phase in QCPI and Uref is the
solvent-driven reference propagator obtained by solving the Schrödinger equation for the system under the time-
dependent reference Hamiltonian:

Ĥref (t; q0, p0) = Ĥ0 + Ĥenv (s, qref(t), pref(t)) (7.2.5)

φ
(
q0, p0,

{
s±j
})

=

∫
dt
(

ΔVint

(
q(t), p(t),

{
s±j
})

− ΔVint

(
qref(t), pref(t),

{
s±j
}))

(7.2.6)

Here q(t), p(t) define the trajectory of the solvent starting from an initial condition q0, p0 forced by the system
path

{
s±j
}

. The reference trajectory, qref(t), pref(t) starts from the same initial condition but is independent of the
system path and subject only to “reference” forces that are given as ansatz of our choice. The method converges to
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the correct answer irrespective of this choice, though certain choices can lead to easier convergence.
QCPI in the above formulation is perfect for applications where the initial condition is separable between the

system and the solvent. If the system consists of two states, the reactant |R⟩ and the product |P⟩, and ĥR = |R⟩⟨R|,
then the following represents the initial condition

ρ̂(0) = ĥR ⊗
exp
(
−βĤenv

)
Zenv

(7.2.7)

where β = 1
kBT is the inverse temperature. ĥR is projects onto the reactant surface. This separable initial condition is

exact for electron transfer reactions where the system can be easily described by two states and the solvent is equili-
brated to the reactant. QCPI has been successfully applied to studying the dynamics of an atomistic electron transfer
reaction.29

For extremely slow reactions, it is not always computationally feasible to follow the dynamics of the reaction out
to time scales where either the reaction is complete or the initial transients have died down and the exponential decay
has set in. In such cases, the rate picture is more useful. Miller7 has shown that the forward rate of a bimolecular
reaction can be given in terms of a thermal correlation function8

kf = Z−1
R lim

t→∞
Tr
(

F̂eiĤt/ℏe−βĤ/2ĥRe−βĤ/2e−iĤt/ℏ
)

(7.2.8)

where ZR is the reactant partition function and F̂ is the symmetrized flux operator defined by

F̂ =
i
ℏ

[
Ĥ, ĥR

]
(7.2.9)

The flux is defined with respect to a transition manifold normal to the reaction coordinate. The long time limit
involved in Equation 7.2.8 proves to be computationally expensive, but is only relevant in gas phase reactions. It has
been shown20,25,34 that in the presence of a condensed phase environment, the rate equation gets modified to be the
value at a “plateau” time. For harmonic baths, numerically exact equations for the resulting complex time correlation
function can be obtained, and have been extensively studied.20,25,34 However, such semi-analytic solutions are not
possible for generic anharmonic environments, where quantum-classical propagation would be most useful.

To calculate the rate using Equation 7.2.8, a convenient representation of the simultaneously equilibrated system-
solvent is required. In case of mixed quantum-classical methods, this amounts to a partial Wigner transform of the
full Boltzmann operator in the space of the solvent degrees of freedom, while keeping the system in configuration
space. Exact expressions for the case of spin-boson, utilizing Gaussian integrals have recently been calculated.35 How-
ever, there can be no semi-closed form expression for the most general case of anharmonic solvents. We have recently
described a simple method for approximating the Wigner density for a general Hamiltonian using classical trajec-
tories,17 and tested it successfully on multidimensional anharmonic Hamiltonians. However due to the difference
between a discrete system and a continuous solvent, it is not a viable method for generating the coupled distribution.

We recall here the idea that the long time rate is independent of the initial condition chosen. The further the
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initial condition is from equilibrium, the longer it takes for the flux correlation function to plateau, but it still rigor-
ously gives the correct rate. This independence has been very successfully exploited14,32,33 to come up with various
initial conditions which make the flux methods amenable to mixed quantum-classical dynamics. We have already
discussed a fully non-equilibrium initial condition1 in Chapter 6. This has the added advantage of also giving the
correct transients. We have tested the non-equilibrium flux method with QCPI to get the correct rates for various
systems. In this chapter, however, we propose a different initial condition similar in spirit to the various separable
initial conditions previously discussed, which captures much more of the system-solvent coupling while remaining
amenable to quantum classical treatment. We also show that there is a significant decrease in the transient effects
and speedup of the plateau time compared to the non-equilibrium version showing that we are approximating the
full Boltzmann operator pretty well.

First we observe that the system-solvent entanglement cannot be ignored if the initial density needs to be close to
the true Boltzmann operator. Let us start by deriving a path integral representation for the partial Wigner transform
of the density operator over the solvent degrees of freedom.

W
(
s±0 , q, p

)
= (2πℏ)−

1
2

∞∫
−∞

dξ
⟨
s+0 , q+

ξ
2

∣∣∣∣exp
(
−βĤ

)∣∣∣∣s−0 , q− ξ
2

⟩
exp
(
−i pξ

ℏ

)
(7.2.10)

To get the path integral representation, split the Boltzmann operator into N imaginary time slices such that
τ = β

N . By subsequent application of the Trotter formula for small τ, we get

exp
(
−βĤ

)
=
(

exp
(
− τ

2
Ĥenv

)
exp
(
−τĤsys

)
exp
(
− τ

2
Ĥenv

))N
(7.2.11)

and further as(
exp
(
− τ

2
Ĥenv

)
exp
(
−τĤsys

)
exp
(
− τ

2
Ĥenv

))N
=
(
e− τ

2 T̂e− τ
2 V̂tote−τĤsyse− τ

2 V̂tote− τ
2 T̂
)N

(7.2.12)

where V̂tot = V̂ + V̂int.
Now, the path integral expression for W

(
s±0 , q, p

)
is given by

W
(
s±0 , q, p

)
= (2πℏ)−

1
2

∞∫
−∞

dξ
∑
s1

. . .
∑
sN−1

∞∫
−∞

dq1 . . .
∞∫

−∞

dqN
⟨
q+ ξ

2

∣∣∣∣e− τ
2 T̂
∣∣∣∣q1⟩ e−

τ
2Vtot(s+0 ,q1)

×
⟨
s+0
∣∣e−τĤsys

∣∣s1⟩ e− τ
2Vtot(s1,q1) ⟨q1|e−τT̂|q2⟩ e−

τ
2Vtot(s1,q2) ⟨s1|e−τĤsys |s2⟩ . . .

×
⟨
sN−1

∣∣e−τĤsys
∣∣s−0 ⟩ e− τ

2Vtot(s−0 ,qN)
⟨
qN
∣∣∣∣e− τ

2 T̂
∣∣∣∣q− ξ

2

⟩
exp
(
−i pξ

ℏ

)
(7.2.13)

Consider the matrix elements corresponding to the terminal two high-temperature factors, which involve the
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difference coordinate ξ

⟨
q+ ξ

2

∣∣∣∣exp
(
− τ

2
T̂
)∣∣∣∣q1⟩ ∝ exp

(
− m
ℏ2τ

(
q+ ξ

2
− q1

)2
)

(7.2.14)

⟨
qN
∣∣∣∣exp

(
− τ

2
T̂
)∣∣∣∣q− ξ

2

⟩
∝ exp

(
− m
ℏ2τ

(
q− ξ

2
− qN

)2
)
. (7.2.15)

We can ignore the normalization constants because in Monte Carlo,15 the sampling function is autonormalized.
Now, separating out the difference coordinate integral in Equation 7.2.13

W
(
s±0 , q, p

)
= (2πℏ)−

1
2
∑
s1

. . .
∑
sN−1

∞∫
−∞

dq1 . . .
∞∫

−∞

dqN ⟨q|e− τ
2 T̂|q1⟩ e−

τ
2Vtot(s+0 ,q1)

×
⟨
s+0
∣∣e−τĤsys

∣∣s1⟩ e− τ
2Vtot(s1,q1) ⟨q1|e−τT̂|q2⟩ e−

τ
2Vtot(s1,q2) ⟨s1|e−τĤsys |s2⟩ . . .

×
⟨
sN−1

∣∣e−τĤsys
∣∣s−0 ⟩ e− τ

2Vtot(s−0 ,qN) ⟨qN|e−
τ
2 T̂|q⟩

×
∞∫

−∞

dξ exp
(
− m

2ℏ2τ
ξ2 − ξ

( m
ℏ2τ

(qN − q1) + i p
ℏ

))
(7.2.16)

The ξ integral in Equation 7.2.16 is what gives us the correct momentum distribution.

∞∫
−∞

dξ exp
(
− m

2ℏ2τ
ξ2 − ξ

( m
ℏ2τ

(qN − q1) + i p
ℏ

))
=

√
πℏ2τ
m

exp
(
ℏ2τ
2m

( m
ℏ2τ

(qN − q1)2 + i p
ℏ

)2)

=

√
πℏ2τ
m

exp
( m

2ℏ2τ
(
qN − q1)2

))
exp
(
−τ p2

2m
+ i p

ℏ
(qN − q1)

)
(7.2.17)

Substituting in Equation 7.2.16, it becomes

W
(
s±0 , q, p

)
= (2πℏ)−

1
2
∑
s1

. . .
∑
sN−1

∞∫
−∞

dq1 . . .
∞∫

−∞

dqN e−
τ
2Vtot(s+0 ,q1)

×
⟨
s+0
∣∣e−τĤsys

∣∣s1⟩ e− τ
2Vtot(s1,q1) ⟨q1|e−τT̂|q2⟩ e−

τ
2Vtot(s1,q2) ⟨s1|e−τĤsys |s2⟩ . . .

×
⟨
sN−1

∣∣e−τĤsys
∣∣s−0 ⟩ e− τ

2Vtot(s−0 ,qN) ⟨qN|e−
τ
2 T̂|q⟩

× exp

(
− 2m
ℏ2τ

(
q− q1 + qN

2

)2
)

exp
(
−τ p2

2m
+ i p

ℏ
(qN − q1)

)
(7.2.18)

From Equation 7.2.18, we see that the true momentum distribution, obtained by doing this integration is coupled
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to the position distribution through q1 and qN. Here, the phase is unbound because there is no term holding q1 close
to qN, which makes p

ℏ (qN − q1) unbound, though p is bound by a Gaussian distribution. While sampling this
distribution using Monte Carlo in multidimensional space, it is this phase term which gives rise to the so-called “sign
problem”. However, from our previous explorations of the Wigner phase space density in one-dimension,17 we know
that this correlation is low even in the most quantum of cases. So, instead of solving this integral exactly, we replace it
by a more convenient distribution. If the solvent has a structure where a normal mode analysis is meaningful, insert
the harmonic Wigner distribution for momentum

P(p) ∝ exp
(
− tanh

(
ℏωβ

2

)
p2

mωℏ

)
(7.2.19)

otherwise we can use the classical Boltzmann factor for the momentum

P(p) ∝ exp
(
−β p2

2m

)
(7.2.20)

Substituting one of the above choices for the momentum distribution into Equation 7.2.16, we get

W
(
s±0 , q, p

)
= (2πℏ)−

1
2
∑
s1

. . .
∑
sN−1

∞∫
−∞

dq1 . . .
∞∫

−∞

dqN ⟨q|e− τ
2 T̂|q1⟩ e−

τ
2Vtot(s+0 ,q1)

×
⟨
s+0
∣∣e−τĤsys

∣∣s1⟩ e− τ
2Vtot(s1,q1) ⟨q1|e−τT̂|q2⟩ e−

τ
2Vtot(s1,q2) ⟨s1|e−τĤsys |s2⟩ . . .

×
⟨
sN−1

∣∣e−τĤsys
∣∣s−0 ⟩ e− τ

2Vtot(s−0 ,qN) ⟨qN|e−
τ
2 T̂|q⟩ P(p) (7.2.21)

Removing the resolution of identities, it is seen that Equation 7.2.21 is equivalent to

W
(
s±0 , q, p

)
∝ P(p)

⟨
s+0 , q

∣∣exp
(
−βĤ

)∣∣s−0 , q⟩ (7.2.22)

Equation 7.2.22 can be evaluated easily using standard path integral Monte Carlo techniques. We notice that
the phase space initial condition is no longer independent of the system initial condition. So, the separation of the
initial density into a phase space distribution for the sovent degrees of freedom and a reduced density matrix for the
system in Equation 7.2.3 and Equation 7.2.4 is no longer possible. Therefore we rewrite the QCPI equations for a
coupled initial condition by removing the initial reduced density matrix from the expression for Q in Equation 7.2.4.

7.3 Numerical examples

Consider a standard two-level system (TLS) coupled to a harmonic bath. The Hamiltonian of the TLS in terms of
the |R⟩ and |L⟩ is given by

Ĥ0 = ℏΩ (|R⟩⟨L|+ |L⟩⟨R|) (7.3.1)
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Figure 7.1: Consolidated rates. Comparisons between non-equilibrium method (filled circles) and near equilibrium
(triangles). Red markers: ξ = 0.1. Blue markers: ξ = 0.5. Violet markers: ξ = 1.5.

which is coupled to a bath of harmonic oscillators through a bilinear coupling

Ĥbath =
∑
j

p̂2j
2
+

1
2
mjω2j x̂2j (7.3.2)

V̂int = −
∑
j

cjx̂j (|R⟩⟨R| − |L⟩⟨L|) (7.3.3)

The harmonic bath is characterized by an Ohmic spectral density18

J (ω) = π
2
ℏξω exp

(
− ω
ωc

)
(7.3.4)

where ξ is the Kondo factor and ωc is the cutoff frequency corresponding to the maximum of the Ohmic spectral
density given in Equation 7.3.4. The parameters were taken from a previous paper by Topaler and Makri.25 The TLS
corresponds to a tunneling splitting of 2ℏΩ = 0.001 05 cm−1 and the cutoff frequency is ωc = 500 cm−1. These
parameters, as mentioned in Chapter 6, are characteristic of many proton transfer and isomerization reactions. A
high tunneling barrier leads to a small tunneling splitting, while the cutoff frequency is comparatively high. The
bath was discretized into 300 oscillators using the logarithmic discretization procedure. QCPI was used for propa-
gating the near equilibrium correlation function. Comparisons were made with the non-equilibrium flux method
implemented using iQuAPI.22,23
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Figure 7.2: Flux as a function of time at room temperature. Black line: non-equilibrium initial condition. Red
markers: near equilibrium initial condition.

In Figure 7.1, we compare the rates obtained using the two methods for a variety of parameters. We see that the
rates are identical over the entire range of parameters. We expect that the plateau time would be much shorter because
the initial conditions are much closer to the equilibrium Boltzmann distribution. To investigate this plateau time, in
Figure 7.2, we look at Kondo parameters of ξ = 0.1 (low coupling) and ξ = 1.5 (high coupling). Both the figures
are at room temperature (β = 1052). Notice that at the low coupling regime, Figure 7.2a, there is no difference
between the near equilibrium flux correlation function and the non-equilibrium correlation function. However
at high couplings, Figure 7.2b, there is observable difference owing to importance of transient effects. The near
equilibrium initial conditions being closer to the true equilibrium density does not show as much transient behaviour
as the non-equilibrium initial condition does. It also plateaus faster than its non-equilibrium counterpart.

7.4 Discussion and concluding remarks

In this chapter, we have discussed a way to create an initial condition for the flux correlation function that is close to
the equilibrium density. This method plateaus to the correct rate much faster than the non-equilibrium initial con-
dition. We also expect that it would plateau faster than other initial conditions that approximate the Boltzmannized
operator.14,32,33 We have shown that it mutes the transients substantially in very challenging parameter regimes. The
near equilibrium initial condition also has a very elegant physical intuition behind it. It seems to indicate that at the
dominant order, the system-solvent interaction affects the solvent position distribution. The momentum distribu-
tion remains comparatively unchanged. This is consistent with the understanding that the solvent equilibrates the
system, and so should be centered on the various localized sites that the system can occupy. In fact, we are able to get
the diagonal parts of the density matrix very accurately. The approximation is most severe in the off-diagonal terms,
where the Wigner phase starts contributing.
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With the PI-Wigner method for calculating the exact Wigner distribution discussed in Chapter 5, we should
be able to directly couple the system to the bath and calculate the true equilibrium. This development is in progress.
There are challenges associated with the “sign” problem in case of the off-diagonal terms of the system density ma-
trix that need to be resolved. However the current initial condition, being approximate, does not suffer from such
problems. Here we have just explored the flux correlation function with the intention of calculating the rate, which is
guaranteed to be exact irrespective of the starting condition. So, the entire focus was on just decreasing the time scales
of simulation. It would also be interesting to evaluate the near equilibrium initial condition as a starting point for ap-
proximating general correlation functions. There is a possibility that in the low coupling regimes this approximation
might be remarkably accurate.

With this chapter, we conclude the work on rate theory. In Chapter 8, we discuss a new way of casting QCPI
to provide exponential speedups while keeping all the advantages of solvent-driven propagators and dynamically
consistent state hopping intact.
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Chapter 8

Blip decomposition ofQCPI under harmonic
back reaction

8.1 Introduction

As we have been discussing, the QCPI method26,27,29,36,37 provides a way to exactly incorporate the interaction be-
tween a fully atomistic solvent and a fully quantum mechanical system. This interaction makes the resultant dynamics
non-Markovian. In a dissipative medium, this non-Markovian “memory” length is truncated. The memory length is
determined by the correlation length of the solvent. The cost of QCPI grows exponentially with this memory length.
A slow and sluggish solvent coupled with a system leads to long memories with short time steps, which can prove to
be extremely challenging when starting with the full system as the reference.

Recent work38–40 has enabled the use of “fully incoherent propagator” as a starting point of QuAPI instead of
the bare system propagator. The bare system propagator uses all system paths. By the “fully incoherent” propagator
or dynamics, we are referring to the phenomenon obtained by restricting the forward and the backward paths of
the dynamics to be identical. For many reactions in strongly coupled solvents, especially where the dynamics is well
described by a rate constant, the fully incoherent dynamics is a very good starting point. Exponential speedups over
the old algorithm were observed even in cases where this blip-sum method was comparatively not as efficient. The
motivation lay in the form of the influence functional for a harmonic bath.22,23

F
[{

s±j
}]

= exp

(
− 1
ℏ

L∑
k=0

Δsk
k∑

l=0

(
Re ηklΔsl − 2i Im ηkl̄sl

))
(8.1.1)

It can be seen that presence of multiple “blips”, or points where the forward and the backward paths differ, leads to
an exponential decrease in the probability amplitude. Thus the most important paths are those that do not have any
blips. Therefore, it is very likely that the dynamics, in a strongly coupled environment, would be governed primarily
by such fully “sojourn” paths. This is the first part of the method, which is the filtering on the basis of the number
of blips. The second part of this method is dependent upon the observation that a fully sojourn path would not
have any non-Markovian memory. So, it should be possible to sum over all such paths iteratively. This is achieved in
what is called the implicit sojourn sum, which gives further speed up to all cases, irrespective of the number of blips
required to converge the dynamics.

Developments in QCPI have significantly increased the time steps36 that can be used and also successfully incor-
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porated increasing portions of memory in the reference propagator, thereby further decreasing the effective mem-
ory.37 With these improvements QCPI has already been used to study a fully atomistic system.29 In this chapter we
combine QCPI with the blip-summation method thereby further reducing the scaling of the method. In Section 8.2
we show how expressing the backreaction in an analytic form under the harmonic approximation and rearranging
the terms can make it possible to implement an implicit sojourn sum algorithm. In Section 8.3, we go into details of
the algorithm. Finally we present numerical examples in Section 8.4.

8.2 Blip decomposition of QCPI

The QCPI formalism combines a “reduced” dimensional, fully quantum mechanical system described by path in-
tegrals with a large dimensional solvent simulated using classical trajectories. The bare system is described by a D-
dimensional Hamiltonian:

Ĥ0 =

D∑
n,m

hn,m |σn⟩⟨σm| (8.2.1)

where σn represent the system DVR states, and the position operator in the system space is defined as

ŝ =
∑
n

σn |σn⟩⟨σn| (8.2.2)

The total Hamiltonian has the form

Ĥ = Ĥ0 + Ĥsol (s, q, p) (8.2.3)

where q, p are the solvent phase space points. Under QCPI, the reduced density matrix, ρred is given by

ρred
(
s±N ;NΔt

)
=

∫
dq0 dp0 P (q0, p0) Q

(
q0, p0, s±N ;NΔt

)
(8.2.4)

where P is the phase space density of the solvent and Q contains all the dynamical effects arising from the system-
solvent interaction. It is calculated as a path integral over the system space.

Q
(
q0, p0, s±N ;NΔt

)
=
∑
s±N−1

∑
s±N−2

. . .
∑
s±0

⟨
s+N
∣∣Ûref (NΔt, (N − 1)Δt; q0, p0)

∣∣s+N-1
⟩
. . .

×
⟨
s+1
∣∣Ûref (Δt, 0; q0, p0)

∣∣s+0 ⟩ ρred (s±0 ; 0
) ⟨

s−0
∣∣Û†

ref (Δt, 0; q0, p0)
∣∣s−1 ⟩ . . .

×
⟨
s−N−1

∣∣Û†
ref ((N − 1)Δt,NΔt; q0, p0)

∣∣s−N ⟩ exp
(
i
ℏ
φ
(
q0, p0,

{
s±j
}))

(8.2.5)

where φ is the solvent backreaction on the system that appears as a path-dependent phase, and Uref is the solvent-
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driven reference propagator obtained by solving the time-dependent Schrödinger equation for the system propagator
under a time dependent “reference” Hamiltonian

Ĥref (t; q0, p0) = Ĥ0 + Ĥsol (s, qref(t), pref(t)) (8.2.6)

φ
(
q0, p0,

{
s±j
})

=

∫
dt
(

ΔHsol

({
s±j
}
, q(t), p(t)

)
− ΔHsol

({
s±j
}
, qref(t), pref(t)

))
(8.2.7)

where (qref, pref) is the reference phase-space trajectory of the solvent with the initial conditions (q0, p0). This refer-
ence trajectory feels is evolved under system forces corresponding to

{
srefj

}
chosen as an ansatz. (q(t), p(t)) is the

phase-space trajectory of the solvent under the system forces with the same initial conditions.
Let us rewrite Equation 8.2.5 in terms of a super-operator, L defined as

Lj

(
s+j+1, s−j+1, s+j , s−j ; q0, p0

)
=
⟨
s+j+1

∣∣∣Û ((j+ 1)Δt, jΔt; q0, p0)
∣∣∣s+j ⟩

×
⟨
s−j
∣∣∣Û† ((j+ 1)Δt, jΔt; q0, p0)

∣∣∣s−j+1

⟩
(8.2.8)

Q
(
q0, p0, s±N ;NΔt

)
=
∑
s±N−1

∑
s±N−2

. . .
∑
s±0

LN−1
(
s±N , s±N−1; q0, p0

)
LN−2

(
s±N−1, s±N−2; q0, p0

)
. . .

× L0
(
s±1 , s±0 ; q0, p0

) ⟨
s+0
∣∣ ρ̂red (0)

∣∣s−0 ⟩ exp
(
i
ℏ
φ
(
q0, p0,

{
s±j
}))

(8.2.9)

Lj

(
s+j+1, s−j+1, s+j , s−j ; q0, p0

)
will also be written as Lj

(
s±j+1, s±j ; q0, p0

)
. Lj is a tensor and is represented in the

system’s basis as a D2 × D2 matrix. The notation
{
s±j
}

is used to denote the entire path. j in this expression is a
dummy variable without any signficance.

Under harmonic backreaction, the backreaction is obtained from the harmonic bath obtained from the solvent.
All effects of anharmonicity is preserved in full atomistic detail in the propagator. In this case the phase becomes
independent of the initial condition of the solvent mode. It can be shown that the path dependent backreaction is
of the form41

φ
({

s±j
})

=

N∑
k=0

k∑
k′=0

Δsk
[(̄
sk′ − srefk′−1

)
γ(0)kk′ +

(̄
sk′ − srefk′

)
γ(1)kk′

]
(8.2.10)

We list here the γ coefficients for convenience:

γ(1)00 = γ(0)NN =
∑
j

c2j
mjω3j

(
ωjΔt

2
− sin

(
ωjΔt

2

))
(8.2.11)

γ(0)00 = γ(1)NN = 0 (8.2.12)

γ(0)kk =
∑
j

c2j
mjω3j

(
ωjΔt

2
+ sin

(
ωjΔt

2

)
− sin

(
ωjΔt

))
(8.2.13)
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γ(1)kk = γ(1)00 (8.2.14)

γ(1)N0 =
∑
j

4c2j
mjω3j

sin2
(
ωjΔt

4

)
sin
((

N − 1
2

)
ωjΔt

)
(8.2.15)

γ(1)k0 =
∑
j

4c2j
mjω3j

sin
(
ωjΔt

4

)
sin
(
ωjΔt

2

)
sin
((
k− 1

4

)
ωjΔt

)
(8.2.16)

γ(0)N0 = γ(0)k0 = 0 (8.2.17)

γ(0)Nk =
∑
j

4c2j
mjω3j

sin2
(
ωjΔt

4

)
sin
(
(N − k) ωjΔt

)
(8.2.18)

γ(1)Nk =
∑
j

4c2j
mjω3j

sin2
(
ωjΔt

4

)
sin
((

N − k− 1
2

)
ωjΔt

)
(8.2.19)

γ(0)kk′ =
∑
j

4c2j
mjω3j

sin
(
ωjΔt

4

)
sin
(
ωjΔt

2

)
sin
((
k− k′ + 1

4

)
ωjΔt

)
(8.2.20)

γ(1)kk′ =
∑
j

4c2j
mjω3j

sin
(
ωjΔt

4

)
sin
(
ωjΔt

2

)
sin
((
k− k′ − 1

4

)
ωjΔt

)
(8.2.21)

Substituting Equation 8.2.10 in Equation 8.2.9 and rearranging, we get

Q
(
q0, p0, s±N ;NΔt

)
=
∑
s±N−1

∑
s±N−2

. . .
∑
s±0

(
LN−1

(
s±N , s±N−1; q0, p0

)
exp
(
i
ℏ
φN
({

s±j
})))

×
(

LN−2
(
s±N−1, s±N−2; q0, p0

)
exp
(
i
ℏ
φN−1

({
s±j
})))

. . .

×
(

L0
(
s±1 , s±0 ; q0, p0

)
exp
(
i
ℏ
φ1
({

s±j
})))

× exp
(
i
ℏ
φ0
({

s±j
})) ⟨

s+0
∣∣ρred (0)

∣∣s−0 ⟩ (8.2.22)

where we have decomposed the full backreaction as a sum over

φk
({

s±j
})

=

N∑
n=k

Δsn
[(̄
sk − srefk−1

)
γ(0)nk +

(̄
sk − srefk

)
γ(1)nk

]
(8.2.23)

The expression for Q, as written in Equation 8.2.22 makes it trivial to incorporate iterative propagation. Suppose
the memory length is N time steps. Then using the fact that the γ coefficients, and consequently the backreaction,
do not couple the time points beyond a distance of N, Q

(
q0, p0, s±N+1; (N + 1)Δt

)
is given as

Q
(
q0, p0, s±N ; (N + 1)Δt

)
=
∑
s±N

∑
s±N

. . .
∑
s±1

(
LN
(
s±N+1, s±N ; q0, p0

)
exp
(
i
ℏ
φN
({

s±j
})))
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×
(

LN−1
(
s±N , s±N−1; q0, p0

)
exp
(
i
ℏ
φN−1

({
s±j
})))

. . .

×
∑
s±0

[(
L0
(
s±1 , s±0 ; q0, p0

)
exp
(
i
ℏ
φ1
({

s±j
})))

× exp
(
i
ℏ
φ0
({

s±j
})) ⟨

s+0
∣∣ρred (0)

∣∣s−0 ⟩] (8.2.24)

If the entire memory is being spanned, the γk,k′ coefficients depend only on the difference k − k′. The inner-most
sum can then be computed iteratively as matrix-vector multiplications, thus keeping the number of paths constant.
In the first step of iteration, we sum over s±0 and get paths depending on s±1 through s±N+1. In the second step, we sum
over s±1 getting paths depending on s±2 through s±N+2. The computational complexity, therefore, grows linearly with
time steps after the memory has been spanned.

8.3 Efficient implementation of blips in QCPI

QCPI generally starts with the solvent driven reference and corrects the dynamics thereon. It has been seen that using
the fully incoherent limit, where the forward and backward system paths are identical can prove to be very useful.
Subsequently paths are included according to increasing number of blips. Since interaction between two blips leads
to an exponential decay in the amplitude of a path, the significance of a path decreases with increasing blips within
the span of memory.

There are DN such fully sojourn paths where D is the number of system DVR states and N is the number of time
steps. Since for all these paths Δs = 0 for all time points, the backreaction φ = 1.

Q(0) (q0, p0, s±N ;NΔt
)
=
∑
s±N−1

∑
s±N−2

. . .
∑
s±0

T(00)
N−1

(
s±N , s±N−1; q0, p0

)
T(00)
N−2

(
s±N−1, s±N−2; q0, p0

)
. . .

× T(00)
0
(
s±1 , s±0 ; q0, p0

) ⟨
s+0
∣∣ρred (0)

∣∣s−0 ⟩ (8.3.1)

T(00)
j

(
s±j+1, s±j ; q0, p0

)
= Lj

(
s±j+1, s±j ; q0, p0

)
exp
(
i
ℏ
φj+1

({
s±k
}))

× δ
(
s+j+1 − s−j+1

)
δ
(
s+j − s−j

)
(8.3.2)

The phase terms in the expression for Q(0) are all unity because there are no blips. Δsj = 0 for all j. So, the zero
blips paths can be solved together using iterated matrix-vector products. The (00) in T(00) indicates that it transfers
a sojourn to a sojourn. The computational cost grows as O

(
ND4

)
, because T(00) is a D2 × D2 matrix whereas the

number of paths in the naïve algorithm grows as O (DN). In fact, we can utilize the sparseness of the T(00) matrix
and come up with a O (ND2) algorithm for computing the iterative matrix-vector products. This is important for
increasing the number of system states. However, here we are interested in systems of a fixed dimensionality. So, the
observation of key importance here is that the dependence on the number of time steps is linear and not exponential.
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Now consider a path where a blip exists at a time index k

Q(1) (q0, p0, sN;NΔt) =
∑
s±N−1

∑
s±N−2

. . .
∑
s±0

T(00)
N−1

(
s±N , s±N−1; q0, p0

)
T(00)
N−2

(
s±N−1, s±N−2; q0, p0

)
. . .

× T(00)
k+1

(
s±k+2, s

±
k+1; q0, p0

)
T(01)
k
(
s±k+1, s

±
k ; q0, p0

)
T(10)
k−1

(
s±k , s

±
k−1; q0, p0

)
. . .

× T(00)
0
(
s±1 , s±0 ; q0, p0

) ⟨
s±0
∣∣ρred (0)

∣∣s±0 ⟩ (8.3.3)

T(10)
j

(
s±j+1, s±j ; q0, p0

)
=

Lj

(
s±j+1, s±j ; q0, p0

)
exp
(

i
ℏφj+1

({
s±k
}))

, if s+j+1 ̸= s−j+1, s+j = s−j
0, otherwise

(8.3.4)

T(01)
j

(
s±j+1, s±j ; q0, p0

)
=

Lj

(
s±j+1, s±j ; q0, p0

)
exp
(

i
ℏφj+1

({
s±k
}))

, if s+j+1 = s−j+1, s+j ̸= s−j
0, otherwise

(8.3.5)

Now, if there is more than one blip in a path, the only case that is left to be considered is that of two consecutive
blips. In that case the transfer matrix would be

T(11)
j

(
s±j+1, s±j ; q0, p0

)
=

Lj

(
s±j+1, s±j ; q0, p0

)
exp
(

i
ℏφj+1

({
s±k
}))

, if s+j+1 ̸= s−j+1, s+j ̸= s−j
0, otherwise

(8.3.6)

It is known that the number of paths required to span all blips over N time steps would be
(D+1

2

)N
which is

significantly less than D2N.38–40 The benefit increases when the environment is significantly coupled to the system,
and very few blips are required for convergence. However there are benefits even in case of a weakly coupled solvent.

8.4 Numerical examples

We illustrate the bQCPI method with numerical examples on the standard spin-boson model. In terms of left (|L⟩)
and right (|R⟩) states, the two-level system (TLS) Hamiltonian is given by

Ĥsys = −ℏΩ (|R⟩⟨L|+ |L⟩⟨R|) (8.4.1)

while the harmonic bath interacting with the system has the standard bilinear coupling

Ĥenv =
∑
j

p̂2j
2mj

+
1
2
mjω2j x̂2j (8.4.2)

V̂int = −
∑
j

cjx̂j (|R⟩⟨R| − |L⟩⟨L|) (8.4.3)
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The bath is described by a spectral density. Here we use the standard Ohmic form18

J(ω) = π
2
ξℏω exp

(
− ω
ωc

)
(8.4.4)

where ξ is the Kondo parameter and ωc is the “cutoff ” frequency corresponding to the maximum of Equation 7.3.4.
The spectral density was discretized using logarithmic discretization using 60 oscillators.

The dynamics is calculated using the bQCPI method and results are compared to the converged QCPI or QuAPI
calculations. In Figure 8.1, we show the results for three different regimes, along with the effect of adding paths
containing the given number of blips. We notice that the relative importance of a path decreases dramatically with
the number of blips. All the parameters tested in Figure 8.1 have very fast baths, which is not the ideal case to study
the improvements obtained through blip summation.

In Figure 8.1a, we consider a system strongly coupled to a fast bath at a high temperature: ωc = 2.5Ω; ξ =

1.2; ℏΩβ = 0.2. Of all the cases in Figure 8.1, it is here that we gain maximally from the blip summation approach.
Convergence was reached with a time step of ΩΔt = 0.5, and a memory length spanning 3Δt. The fully incoherent
limit itself was pretty close. On adding just one blip, we reached convergence using just 9 paths. Without blips, a
kmax = 3 calculation would need 256 paths. Even when all blips were considered, bQCPI required just 81 paths.
This is a result of the scaling of the full calculation going down from D2(kmax+1) to

(D+1
2

)(kmax+1)
when using the

blip summation algorithm (kmax here represents the memory length, and D the system dimensionality). The next
two examples are in regimes which do not magnify the efficiency obtained from blips. The low coupling strength
implies that the relative importance of paths with more blips would not decrease as dramatically with the number of
blips present, leading to convergence only being achieved at relatively high number of blips. However, there is still an
enormous cost saving that happens allowing us to go to higher memories more easily. In Figure 8.1b and 8.1c, since
temperature and coupling are low, the cost of adding an additional blip to the path amplitude is not huge. So, a large
number of blips are required to converge the results. Calculations were done with a memory of kmax = 10Δt, which
would generally require 411 paths. At converged number of blips, for Figure 8.1b roughly 0.2% paths were used
(upto 4 blips considered). For Figure 8.1c, roughly 0.5% of all the paths were used with convergence being achieved
at 5 blips. Given that there is no longer the exponential proliferation of classical trajectories with time, because of
harmonic backreaction with analytical coefficients, the cost of calculation is further decreased from standard QCPI.
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Figure 8.1: Examples of the dynamics of a two-level system coupled to a harmonic bath at various parameters. Left
panel shows the dynamics at various levels; Right panel shows the corrections due to separate number of blips.
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Figure 8.2: Comparison between converged calculations with DCSH (red solid line) with calculations without
DCSH (blue solid line) with Δt = 0.125 and kmax = 9. The harmonic bath is characterized by ωc = Ω; ξ =
2; ℏΩβ = 1.

Finally we want to ensure that the bQCPI procedure can take advantage of the various hopping schemes. To that
end, in Figure 8.2, we consider a case of a sluggish bathωc = Ω with a high coupling ξ = 2 at a moderate temperature
ℏΩβ = 1. We compare the fully converged dynamically consistent state hopping (DCSH) results to the random
hopping results with a reference forced by the mean surface at the same parameters (Δt = 0.125; kmax = 9). The
non-DCSH results are completely unconverged. QCPI captures all the real memory implicitly in the solvent driven
reference propagators. The only portion, therefore, that leads to the exponential growth of paths is the quantum
part of memory. As discussed by Walters and Makri,37 DCSH is one way to capture more of the quantum memory
into the solvent driven reference propagators. Further, it has been shown that keeping the reference consistent with
the branching scheme leads to reduction of spurious memory. Thus, the bQCPI with the DCSH reference and
branching leads to low amount of memory in comparison to any other. The bQCPI method is also setup to take full
advantage of future improvements in reference and branching schemes.

8.5 Discussion and concluding remarks

We have developed here a methodology for combining the blip summation method with QCPI. The goal is to en-
sure through this combination that the main advantages of QCPI remain intact. We want to have larger time steps
and shorter memories that can be obtained through QCPI, while taking advantage of improved scaling that blip
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summation can give. We have successfully derived the method and shown its improved convergence at a variety of
parameters. Like the original blip summation method for QuAPI, the maximum benefit is obtained when the bath is
sluggish and strongly coupled to the system. This also happens to be the case where the dynamics has long timescales
and can afford very short time steps. For such processes, it can be seen that bQCPI converges with very few paths.
Even in the most unfavorable parameter regime, where the solvent is fast or not strongly coupled to the system, we
show that bQCPI still has much better scaling properties. This exponential speedup increases as the number of states
used to represent the system increases. This is especially beneficial for long reactions. We expect bQCPI to also be
useful for calculating the rate in cases where it is still infeasible to carry out simulation of the full dynamics over the
entire time scale.
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Chapter 9

Conclusion

Quantum dynamics in condensed phase remains an extremely challenging and exciting field. The exponential pro-
liferation of paths with complex weights of unit norm is the source of the dynamical “sign” problem in the path
integral description. This makes it impossible to use the single most useful method for doing multidimensional inte-
grals, namely Monte Carlo. Various approximations have been developed over the years to try to tackle this problem.

In our group, of late QCPI has been a very effective framework for doing exact quantum dynamical simulations
of a system coupled to a (quasi)classical solvent. Recent developments have made it feasible to do ultrafast atomistic
simulations with QCPI. However for slow reactions, following the dynamics out to the very end can be still very
difficult. So, the broad starting goal was to use QCPI to calculate the rate using the equilibrium flux correlation
functions. As a first step towards this goal, we started by looking at methods to calculate the Wigner function of the
solvent. We first proposed the adiabatic switching Wigner method (ASW) which is an approximate method based
on classical trajectories. It is extremely simple to implement and surprisingly accurate, with a nice additional feature
that the ASW distribution is temporally invariant under propagation using classical trajectory. Normally the Wigner
function is not invariant under classical mechanics. This causes the lack of time invariance of thermodynamic quan-
tities, leakage of ZPE and other issues. The ASW distribution in spite of being approximate is therefore immune to
these problems. We then applied the ASW method to a couple of atomistic Hamiltonians in normal modes and in
Cartesian coordinates. We also looked at various spectra, invariance of thermodynamics, and compared the accuracy
over a range of temperatures and anharmonicities to exact PIMC results. The ASW method seems to be very promis-
ing for cases where an approximate Wigner distribution would suffice, especially with the goal of launching classical
trajectories. It would be interesting to see the use of ASW with QCPI for solvents with ab initio Hamiltonians in
the coming future.

Returning to the problem of calculating the rate using QCPI, we could not use ASW to simultaneously equili-
brate the solvent with a fully quantum system. So a new formulation of the rate theory was needed. To this end, we
developed the non-equilibrium flux method, which completely got rid of the dependence on the thermal Boltzmann
density operator. This allows us to start with initial conditions governed by the physics of the system, and simulate
in such a manner that we can get both the pre-exponential transients and the subsequent long time rate constant.
This unification of the fast and slow timescales is very important from the perspective of ultrafast reactions where
the transients can in fact be essential to the dynamics. During this work, we realized that the rate is independent
of the initial condition. The closer this initial condition is to the true Boltzmann density, the faster we get the rate.
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Now, because we are starting from a completely non-equilibrium initial condition, we have to simulate to longer
time scales. Of course this is still doable, but unnecessary when we are not interested in the transients. Utilizing this
independence, we constructed a new PIMC-based density which couples the system and the solvent and very closely
approximates the Boltzmann density. This is the foundation of the near equilibrium flux correlation function. We
show that it gives significantly less transients than the non-equilibrium correlation function.

These methods of approximating the Wigner function of a solvent coupled with a quantum system leads back
to the question — is it is possible to mitigate the “sign” problem of the Wigner transform sufficiently to allow an
exact computation through Monte Carlo for a general multidimensional Hamiltonian? We realized that using the
relation between Husimi function and the Wigner function, we can derive a path integral expression which can
be pretty efficiently sampled by Monte Carlo and systematically converged to the exact Wigner function. This is
extremely exciting for multiple reasons. Unlike in case of ASW, we no longer need a good zeroth Hamiltonian. Nor
are we limited to having all degrees of freedom governed by classical mechanics. We are working on ways to use
PI-Wigner to calculate the exact Wigner function for a solvent interacting with a quantum system. Applications to
liquids can also prove to be very interesting.

Finally, all the methods for rate calculation that we have derived are based on QCPI. So, the bottleneck of all these
methods is QCPI, speeding which up boosts all calculations, direct dynamics or rate. With solvent driven reference
propagators and DCSH, QCPI is already very powerful. We worked on incorporating the blip-summation method
in QCPI under the harmonic backreaction framework, which gives exponential benefit to scaling. Now the scaling
of QCPI is quite comparable to that of classical molecular dynamics in cases where the system is highly coupled to
the solvent. It should, therefore, now be extremely easy to use QCPI for simulating charge transfer in highly polar
solvents.

The work described in this dissertation leads very easily into multiple domains of exciting research in both QCPI
and quasiclassical trajectory based studies, many of which are being pursued currently.
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