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The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive
flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the
common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime
only slightly slower than the equilibrium flux form. When the reactants are described by a single
quantum state, as in the case of electron transfer reactions, the factorized reactant density describes
the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium
flux expression yields the reactant population as a function of time, allowing characterization of the
dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be
identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical
reactions and is ideally suited to mixed quantum-classical methods. Published by AIP Publishing.
https://doi.org/10.1063/1.4986587

I. INTRODUCTION

Reactive processes, such as charge transfer and barrier
crossing, often occur on time scales that are much longer
than those associated with the ro-vibrational dynamics of the
reactants. Rather than following the slow transformation of
reactants to products, it is advantageous in such cases to eval-
uate the reaction rate constant using the flux formalism.1–15

The latter is based on equilibrium correlation functions that
involve the reactive flux, and classical, quantum mechanical,
as well as semiclassical, formulations are available. The main
advantage of the flux correlation function formalism is that the
need to follow the dynamics only up to the “plateau time,” i.e.,
the time required for initial transients to settle and the reactant
population to enter its slow, exponential decay.

There are, of course, many cases of fast reactions char-
acterized by low potential barriers, where there is no clear
separation of time scales. In such situations, no plateau regime
can be identified, thus the flux correlation function formal-
ism cannot be used to obtain the reaction rate. In some
cases of ultrafast reactions, transient dynamics persists almost
until the reactant population attains its equilibrium value,
causing strongly nonexponential kinetics for the duration of
the reaction. These situations require full simulation of the
population dynamics. Since one does not know a priori,
one would typically attempt to infer the rate by evaluating
the flux correlation function, and in the event this func-
tion does not appear to plateau, one would abandon this
approach and proceed to simulate the evolution of the reactant
population.

Further, fully quantum mechanical calculations of con-
densed phase reactions are impractical, and one has to resort
to approximate methods. Quantum-classical approaches are
particularly attractive because classical mechanics usually
captures the dynamics of the quantum system’s environ-
ment with satisfactory accuracy, while offering linear scaling.

Several intuitive and efficient quantum-classical approxima-
tions are available for simulating state populations. However,
equilibrium correlation functions require the evaluation of
the Boltzmann operator for all interacting degrees of free-
dom. Evaluation of this operator in a mixed quantum-classical
representation presents a major challenge, making quantum-
classical methods not directly suitable to this task.

In this paper, we propose a non-equilibrium, factorized
reactant density formulation of the reactive flux, which (at
least in the case of electron transfer reactions) addresses both
of the above issues. By removing the need for evaluating the
Boltzmann density of the total Hamiltonian, this formulation
is easily amenable to quantum-classical treatments. In addi-
tion, the factorized reactant density formulation yields directly
the early time transient dynamics and (when relevant) the
rate coefficient associated with long-time exponential decay,
allowing characterization of slow or fast reaction kinetics from
a single calculation. Factorized forms of the Boltzmann oper-
ator have been employed in previous rate calculations16 as an
approximation to the near-equilibrium density.17 We empha-
size that the factorized reactant density formulation of the
reactive flux presented in Sec. II is not an approximation and
that (if evaluated exactly) it yields the same reaction rate value
obtainable through the conventional equilibrium reactive flux
formalism.

Section II describes the reactive flux with a factorized ini-
tial density and its relation to population dynamics. The char-
acteristics of the non-equilibrium flux are illustrated through
model calculations in Sec. III. Some concluding remarks,
along with an outlook, are given in Sec. IV.

II. REACTIVE FLUX WITH NON-EQUILIBRIUM
INITIAL CONDITIONS

We denote the reactant and product states collectively as
|R〉 and |P〉, respectively. Miller has shown6,7 that the (forward)
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rate constant for reactive processes in gas phase bimolecular
collisions is given by the following expression:

kf = Z−1
R lim

t→∞
Tr

(
F̂ eiĤt/~e−βĤ/2ĥRe−βĤ/2 e−iĤt/~

)
, (2.1)

where β = 1/kBT is the inverse temperature, ZR is the par-
tition function of the reactants, ĥR = |R〉 〈R| is an operator
that projects onto reactants, and F̂ is the symmetrized flux
operator,

F̂ =
i
~

[Ĥ, ĥR]. (2.2)

The dividing surface that separates reactants from products
is perpendicular to the reaction coordinate, which defines
the “system” with Hamiltonian Ĥsys, while the remaining
degrees of freedom constitute the “environment,” defined by
Ĥenv = Ĥ − Ĥsys − V̂int.

For typical barrier crossing processes in the condensed
phase, where the reactant-product complex is characterized
by a double well potential (or by two bound diabatic surfaces,
as in electron transfer reactions), Eq. (2.1) must be modified
to

kf = Z−1
R Tr

(
F̂ eiĤt/~e−βĤ/2ĥRe−βĤ/2e−iĤt/~

) ����t'tplateau

, (2.3)

where tplateau is the “plateau time,” when the initial transients
have died out and the reactant population has just entered the
slow, exponential decay. Further, Eq. (2.3) is valid under the
assumption that all non-reactive intra-well processes occur on
a time scale much shorter than the time scale for completion of
the reaction. This is often the case, as typical potential barriers
separating reactants and products are significantly larger than
the thermal energy. Under these conditions, the plateau time
occurs relatively early, such that kftplateau� 1. On a longer time
scale, the function inside the trace of Eq. (2.3) is not constant
but decays exponentially.

Rearranging the trace and exploiting the Hermitian char-
acter of the flux operator, Eq. (2.3) can also be written in the
form

kf = −Feq(tplateau), (2.4)

where

Feq(t) = Z−1
R Tr

(
e−iĤt/~e−βĤ/2ĥR e−βĤ/2eiĤt/~F̂

)
. (2.5)

Assuming that the coupling V int between system and environ-
ment is diagonal in position, the flux operator acts within the
space of the system. Then Eq. (2.5) may be rewritten in the
form

Feq(t) = −Tr sys

(
ρ̂red

eq (t)F̂
)

, (2.6)

where ρ̂red
eq (t) is the reduced density operator of the quantum

system,

ρ̂red
eq (t) = Tr env

(
e−iĤt/~ ρ̂eq(0)eiĤt/~

)
, (2.7)

and the initial condition of the density is

ρ̂eq(0) = Z−1
R e−βĤ/2ĥR e−βĤ/2. (2.8)

According to Eq. (2.6), the reaction rate is given by the (nega-
tive of) the expectation value of the flux operator in the plateau
regime, with the initial density given by Eq. (2.8).

Invoking Onsager’s ideas,18 we argue that (after the ini-
tial transients have settled) the decay of the expectation value
of the flux should approach its thermodynamic limit with the
same rate, regardless of the initial condition. This invariance
has been used to show the equivalence of several commonly
used rate expressions that involve different symmetrizations of
the Boltzmann-transformed flux.17 In this work, we consider
replacing Eq. (2.8) by a simpler, factorized initial condition,
which is physically meaningful and easier to evaluate. In
particular, a factorized initial condition would allow a fully
quantum mechanical treatment of the reaction coordinate and
a classical (or quasiclassical) treatment of the its environ-
ment, by means of trajectories sampled from a phase space
distribution. The particular form we choose is designed to
mimic the early state of the reactive process of interest. We
choose a factorized initial condition that describes the isolated
reactants,

ρ̂non-eq(0) = ĥR
e−βĤ init

env

Z init
env

, (2.9)

where Ĥ init
env is the Hamiltonian for the degrees of freedom

of the environment in (exact or approximate) equilibrium
with the system in the reactant state and Z init

env is its parti-
tion function. In the particular case of an electron transfer
reaction, Ĥ init

env is the Hamiltonian for the solvent equilibrated
with respect to the quantum state describing the electron
donor, thus the factorized density of Eq. (2.9) describes the
reactant state exactly in this case. We define the expectation
value of the flux subject to this new, non-equilibrium initial
density,

Fnon-eq(t) = Tr
(

e−iĤt/~ ρ̂non-eq(0)eiĤt/~F̂
)

= Trsys

(
ρ̂red

non-eq(t)F̂
)

. (2.10)

It is easy to see that

Fnon-eq(t) =
i
~

Tr
(

e−iĤt/~ ρ̂non-eq(0)eiĤt/~[Ĥ , ĥR]
)

=
d
dt
ρRR(t), (2.11)

where

ρRR(t) = 〈R| ρ̂red
non-eq(t) |R〉 (2.12)

is the population of the reactants with the initial value equal to
1, according to Eq. (2.9). Thus, Fnon-eq(t) is equal to the time
derivative of the reactant population at all times. Once the
transients die out, the reactive process enters the exponential
decay regime, where the reactant population decays according
to the form

ρRR(t) − ρRR(∞) =
[
ρRR(texp) − ρRR(∞)

]
e−(kf + kb)(t−texp),

(2.13)
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where texp indicates the onset of the exponential regime in the
population dynamics and kf and kb are the forward and back-
ward rates. The time derivative of the reactant population is

d
dt
ρRR(t) = − (kf + kb)

[
ρRR(texp) − ρRR(∞)

]
e−(kf + kb)(t−texp).

(2.14)

The time texp may be longer than the plateau time, but (as
long as there is a separation of time scales) it is much shorter
than (kf + kb)�1, thus Eq. (2.14) will plateau. At the onset of
the plateau regime, the reactant population has not yet changed
much from its initial value, thus ρRR(tplateau)'1. It follows that

Fnon-eq(texp) =
d
dt
ρRR(texp) = − (kf + kb) (1 − ρRR(∞)) = −kf

(2.15)

where the last equality is a consequence of the detailed bal-
ance condition. Thus, if there is a separation of time scales, the
expectation value of the flux with the non-equilibrium initial
condition corresponding to the reactant density will plateau
to the (negative of) the forward reaction rate constant. Thus,
in line with the discussion of Ref. 17, the equilibrium and
non-equilibrium flux expressions have the same plateau value
(and subsequent decay), although they are expected to differ at

earlier times. The ability to use a factorized thermal den-
sity without affecting the accuracy of the computed rate
value is particularly useful in simulations employing quantum-
classical methods.

Most importantly, the non-equilibrium flux expression
with a factorized reactant density is particularly useful in the
case of electron transfer reactions, where Eq. (2.9) provides
an exact description of the reactive species at the onset of the
chemical process. Even when the lack of a clear separation
of time scales causes a late onset of the exponential regime,
i.e., the absence of a plateau and/or nonexponential kinetics,
the non-equilibrium flux can still be employed to infer the
evolving reactant population,

ρRR(t) = 1 +
∫ t

0
Fnon-eq(t ′) dt ′. (2.16)

If the transient dynamics survive long enough for the reac-
tant population to drop substantially from its initial value,
Eq. (2.16) captures this early nonexponential dynamics faith-
fully, while the rate constant obtained from Eq. (2.15) (along
with the backward rate, which is available through the detailed
balance condition) can be used to infer the subsequent popu-
lation decay through an exponential function, i.e.,

ρRR(t) =




1 +
∫ t

0
Fnon-eq(t ′) dt ′, t < texp,

ρRR(∞) +
[
ρRR(texp) − ρRR(∞)

]
e−(kf + kb)(t−texp), t > texp.

(2.17)

Given the intimate connection between the non-
equilibrium flux and the population dynamics, an obvious
question is whether one could obtain the same information
by computing the population and evaluating its time deriva-
tive numerically. The main problem with that approach is that
it can be unstable, as numerical derivatives are very sensi-
tive to statistical noise. Since most simulation methods appli-
cable to molecular/condensed phase systems employ Monte
Carlo sampling,19 it is preferable to differentiate the pop-
ulation expression analytically. By contrast, the integration
procedure required inferring the population from the non-
equilibrium flux is stable; in fact integration tends to wipe out
the effects of random noise that may be present in the derivative
function.

As mentioned earlier, one of the difficulties associated
with numerical evaluation of the equilibrium flux expres-
sion is often the need to evaluate the Boltzmann operator
in the appropriate representation. For example, if a mixed
quantum-classical approximation to the time evolution is
adopted, one needs to obtain the Wigner quantized phase
space distribution20 for the particles comprising the sys-
tem’s environment, in equilibrium with the reaction coordinate
which should be treated quantum mechanically. In the case
of molecular systems with a well-defined harmonic zeroth
order Hamiltonian, we have shown that the Wigner function

can be obtained approximately from adiabatically switched
trajectories;21 however, accounting for the interaction between
classical and quantum degrees of freedom presents a chal-
lenge. On the other hand, the use of a non-equilibrium flux
expression with a factorized reactant density is easily amenable
to a variety of numerical treatments and is ideally suited to
quantum-classical methods. Even when the factorized form is
only an approximation of the true reactant density, the pro-
cedure yields the exact reaction rate. Additionally, when the
density factorization is exact, as in the case of electron transfer,
integration of the non-equilibrium flux yields the early popu-
lation dynamics, which is crucial for a correct characterization
of the reaction prior to the onset of exponential kinetics and
when a plateau cannot be identified.

III. NUMERICAL EXAMPLES

We illustrate the ideas presented in Sec. II with several
numerical examples on model symmetric two-level systems
(TLSs) coupled to harmonic dissipative environments. The
TLS Hamiltonian is given by

Ĥsys = −~Ω (|R〉 〈P| + |P〉 〈R|) , (3.1)

while the harmonic bath and system-bath interaction have the
usual form,

 06 June 2025 08:53:41
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Ĥenv =
∑
j

p̂2
j

2mj
+ 1

2 mjω
2
j q̂2

j ,

V̂int = −
∑
j

cjq̂j (|R〉 〈R| − |P〉 〈P|).
(3.2)

The bath is described by an Ohmic spectral density,22

J(ω) ≡
π

2
ξ~ω e−ω/ωc , (3.3)

where ξ is the Kondo parameter and ωc is the “cutoff” fre-
quency, which corresponds to the maximum of Eq. (3.3). The
equilibrium flux was evaluated using the quasi-adiabatic prop-
agator path integral23 (QuAPI) methodology of complex-time
flux correlation functions.24,25 The non-equilibrium flux with
a factorized initial condition was obtained by propagating the
reduced density matrix using the iterative decomposition of
the QuAPI expression.26–28 The factorized initial condition is
an exact description of the reactant species in the case of a
TLS.

FIG. 1. Comparison of the equilibrium and non-equilibrium flux functions,
Eqs. (2.5) and (2.10), for the first dissipative TLS described in Sec. III. The
solid line shows the (negative of the) function with the equilibrium initial
condition, while the red markers show the (negative of the) flux with the
initial condition given by the reactant density. (a) ~ωcβ = 0.2, ξ = 0.1. (b)
~ωcβ = 0.2, ξ = 0.5. (c) ~ωcβ = 10, ξ = 0.5.

The parameters of the first example are chosen from ear-
lier work,29 where the TLS coupling corresponds to a tunneling
splitting 2~Ω = 0.001 05 cm�1 and the bath cutoff frequency
has the value 500 cm�1. These parameters are characteristics of
many proton transfer or isomerization reactions, where a rela-
tively high potential barrier leads to a small tunnelling splitting,
while the vibrational frequencies of the environment are much
higher. Thus, there is a clear separation of time scales and one
expects a well-defined flux plateau.

The equilibrium and non-equilibrium flux functions are
compared in Fig. 1. It is seen that both functions plateau
within a fairly short time, of the order of the characteris-
tic time scale ω−1

c of the degrees of freedom comprising the
environment. While the equilibrium flux appears to plateau
somewhat earlier, as expected (given the equilibrium ini-
tial condition), the flux with a factorized reactant density
does not take much longer to reach its plateau. The short-
time behavior of the non-equilibrium flux differs somewhat,

FIG. 2. Non-equilibrium flux and population dynamics for the second dissi-
pative TLS described in Sec. III. (a) Non-equilibrium flux as a function of
time. (b) Black line: time integral of the non-equilibrium flux. Red markers:
evolution of the initially populated state computed through propagation of the
density matrix. (c) The data displayed in (b) plotted on a logarithmic scale.
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reflecting the true transient dynamics of the reactant popula-
tion, and the difference between the two forms increases with
system-bath coupling strength. The rate constants obtained
from the plateau values of both flux functions agree with the
results of Ref. 29.

The second model employs parameters encountered
in some ultrafast condensed phase electron transfer reac-
tions. Here the parameters are ωc = 2.5Ω, ~ωc β = 0.5, and
ξ = 1.2. Figure 2 shows the non-equilibrium flux as a func-
tion of time, along with its time integral, which is seen
to be in excellent agreement with the reactant population
obtained through direct propagation of the reduced density
matrix. The proximity of TLS and bath time scales leads
to rapid population decay. Figure 2(b) shows that the flux
reaches a large negative value around ωct ≈ 1. This region
corresponds to an inflection point of the population, which
shortly thereafter settles into an exponential decay with a con-
stant rate, as evidenced from the logarithmic plot shown in
Fig. 2(c). (Note that the deviation of the integrated flux from
the directly computed population observed on the logarithmic
plot is a consequence of the numerical error in the trape-
zoid rule integration of the flux.) However, since the duration
of the transient dynamics is not negligible compared to the
population decay time, the flux enters its exponential decay
regime on the same time scale and thus does not display a
plateau.

As a third example, we discuss the quantum-classical path
integral30,31,33 (QCPI) all-atom simulation of the ferrocene-
ferrocenium self-exchange electron transfer reaction in liq-
uid hexane.32 This is an ultrafast reaction that completes in
a few picoseconds. In that case, the non-exponential tran-
sient dynamics persist until the reaction is nearly complete,
leading to much faster decay than the rate constant associ-
ated with the long-time exponential regime would seem to
predict.

IV. CONCLUDING REMARKS

One of the flux formulations of reaction dynamics
expresses the rate as the cross correlation function of a pro-
jector and the flux operator, or (equivalently) as the expec-
tation value of the reactive flux with respect to a symmet-
rically “Boltzmannized” operator. These expressions involve
the Boltzmann operator with respect to all degrees of freedom,
whose computation often presents challenges, in particular
if mixed quantum-classical methods are to be employed. To
remove this obstacle, one would like to replace the Boltz-
mann operator by a factorized form, such that the quantum
system and its environment may be treated at different lev-
els of approximation. However, such a modification naturally
leads to a different function.

Since a change of initial conditions does not affect the
rate of approach to equilibrium, one may replace the Boltz-
mann operator by a non-equilibrium form without affecting the
plateau value of the flux. As long as the real time dynamics is
evaluated in a numerically exact manner, the non-equilibrium
flux expression yields the exact value of the rate constant,
irrespective of any approximations made to the initial thermal
density. This feature offers considerable flexibility, allowing

convenient approximations of the Boltzmann density without
sacrificing accuracy in the computed value of the reaction
rate. This flexibility is particularly valuable in simulations
employing quantum-classical methods.

In particular, if the reactant density involves a single quan-
tum state, as in the case of electron transfer reactions, the
factorized initial condition describes the true initial state of
the reactant species and the flux expression gives precisely the
time derivative of the reactant population. Thus, in addition
to its convenient factorized initial density, this flux expres-
sion yields the short-time transient dynamics and (through its
plateau value) the rate of exponential decay, allowing charac-
terization of slow or ultrafast reaction in a unified framework.
The examples presented in Sec. III illustrate different types of
ultrafast dynamics, where determination of the rate through the
equilibrium flux may not be possible (because the flux does not
plateau, even though the population follows exponential decay
for the most part) or where such a rate may not even be mean-
ingful (because the non-exponential population decays within
a time that is much shorter than the inverse of the long-time
rate).

As expected, the non-equilibrium flux exhibits more pro-
nounced transients and may settle to its plateau value some-
what slower compared to the equilibrium flux. However, the
examples presented in Sec. III show that the plateau time is
still reached quite rapidly. This is to be expected even in the
case of very slow processes, since the plateau time of the
non-equilibrium flux coincides with the onset of exponential
population decay, which occurs very early (on the time scale of
intra-well dynamics) compared to the time for completion of
the reaction. Thus, the use of the non-equilibrium flux expres-
sion does not require simulation of the dynamics for very long
times.

The non-equilibrium formulation of the reactive flux will
facilitate simulations of fast and slow reactions in solution
or biological systems. A particularly attractive possibility
is its evaluation using the rigorous QCPI methodology,30,31

which treats the interaction between the quantum system and
its classical environment in full detail and without approx-
imation. Applications to charge transfer reactions are in
progress.

ACKNOWLEDGMENTS

This material is based on work supported by the National
Science Foundation under Award No. CHE 13-62826.

1R. Kubo, J. Phys. Soc. Jpn. 12, 570–586 (1957).
2T. Yamamoto, J. Chem. Phys. 33, 281–289 (1960).
3J. C. Keck, J. Chem. Phys. 32, 1035 (1960).
4J. C. Keck, Adv. Chem. Phys. 13, 85 (1967).
5R. Kapral, J. Chem. Phys. 56, 1842 (1972).
6W. H. Miller, J. Chem. Phys. 61, 1823–1834 (1974).
7W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. 79,
4889–4898 (1983).

8D. Chandler, J. Chem. Phys. 68, 2959–2970 (1978).
9D. Chandler, Introduction to Modern Statistical Mechanics (Oxford Uni-
versity Press, New York, 1987).

10P. Hänggi, P. Talkner, and M. Borcovec, Rev. Mod. Phys. 62, 251–341
(1990).

11B. J. Berne, in Multiple Time Scales, edited by J. U. Brackbill and B. I. Cohen
(Academic Press, New York, 1985), p. 419.

 06 June 2025 08:53:41

https://doi.org/10.1143/jpsj.12.570
https://doi.org/10.1063/1.1731099
https://doi.org/10.1063/1.1730846
https://doi.org/10.1002/9780470140154.ch5
https://doi.org/10.1063/1.1677461
https://doi.org/10.1063/1.1682181
https://doi.org/10.1063/1.445581
https://doi.org/10.1063/1.436049
https://doi.org/10.1103/revmodphys.62.251


152723-6 A. Bose and N. Makri J. Chem. Phys. 147, 152723 (2017)

12B. J. Berne, in Activated Barrier Crossing: Application in Physics, Chem-
istry and Biology, edited by G. R. Fleming and P. Hänggi (World Scientific
Publishing Co. Pt. Ltd., Singapore, 1993), pp. 82–119.

13G. Ciccotti, in Proceedings of the NATO ASI on Computer Simulation in
Materials Science, edited by M. Meyer and V. Pontikis (Kluwer, Dordrecht,
1991), pp. 119–137.

14E. Pollak and J.-L. Liao, J. Chem. Phys. 108, 2733–2743 (1998).
15W. H. Miller, Faraday Discuss. 110, 1–21 (1998).
16L. Chen and Q. Shi, J. Chem. Phys. 130, 134505 (2009).
17I. R. Craig, M. Thoss, and H. Wang, J. Chem. Phys. 127, 144503

(2007).
18L. Onsager, Phys. Rev. 38, 2265–2279 (1931).
19N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, H. Teller, and E. Teller,

J. Chem. Phys. 21, 1087–1092 (1953).

20E. J. Wigner, Chem. Phys. 5, 720 (1937).
21A. Bose and N. Makri, J. Chem. Phys. 143, 114114 (2015).
22A. O. Caldeira and A. J. Leggett, Phys. A 121, 587–616 (1983).
23N. Makri, Chem. Phys. Lett. 193, 435–444 (1992).
24M. Topaler and N. Makri, Chem. Phys. Lett. 210, 285–293 (1993).
25J. Shao and N. Makri, Chem. Phys. 268, 1–10 (2001).
26N. Makri and D. E. Makarov, J. Chem. Phys. 102, 4600–4610 (1995).
27N. Makri and D. E. Makarov, J. Chem. Phys. 102, 4611–4618 (1995).
28N. Makri, J. Math. Phys. 36, 2430–2456 (1995).
29M. Topaler and N. Makri, J. Chem. Phys. 101, 7500–7519 (1994).
30R. Lambert and N. Makri, J. Chem. Phys. 137, 22A552 (2012).
31R. Lambert and N. Makri, J. Chem. Phys. 137, 22A553 (2012).
32P. L. Walters and N. Makri, J. Phys. Chem. Lett. 6, 4959–4965 (2015).
33N. Makri, Int. J. Quantum Chem. 115, 1209–1214 (2015).

 06 June 2025 08:53:41

https://doi.org/10.1063/1.475665
https://doi.org/10.1039/a805196h
https://doi.org/10.1063/1.3097128
https://doi.org/10.1063/1.2772265
https://doi.org/10.1103/physrev.38.2265
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1750107
https://doi.org/10.1063/1.4930271
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1016/0009-2614(92)85654-s
https://doi.org/10.1016/0009-2614(93)89135-5
https://doi.org/10.1016/s0301-0104(01)00286-5
https://doi.org/10.1063/1.469508
https://doi.org/10.1063/1.469509
https://doi.org/10.1063/1.531046
https://doi.org/10.1063/1.468244
https://doi.org/10.1063/1.4767931
https://doi.org/10.1063/1.4767980
https://doi.org/10.1021/acs.jpclett.5b02265
https://doi.org/10.1002/qua.24975

