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Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an
extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose
a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the
computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order
Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase
space distribution is propagated in time via classical trajectories, while the perturbation is gradually
switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action
if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure
produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of an-
harmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize
the approach to finite temperature by introducing a density rescaling factor that depends on the energy
of each trajectory. Time-dependent properties are obtained simply by continuing the integration of
each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate
Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties
are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the
method produces results in very good agreement with those obtained by full quantum mechanical
methods over a wide temperature range. The method is simple and efficient, as it requires no input
besides the force fields required for classical trajectory integration, and is ideal for use in quasiclas-
sical trajectory calculations. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930271]

I. INTRODUCTION

Classical molecular dynamics simulations provide simple
and computationally efficient ways to follow the time evolution
of condensed phase and biological systems using Newtonian
trajectories. The major corrections to classical dynamics calcu-
lations in large systems typically arise from quantization of the
initial density matrix and, in many cases, nonadiabatic effects,
usually associated with transitions among Born-Oppenheimer
states. Quantum coherence effects, which are extremely impor-
tant in small systems, are usually washed out in large biological
molecules or in processes occurring in liquid environments.
Quantization of the initial density matrix is necessary when the
zero-point energy (ZPE) is not negligible and quantum disper-
sion leads to distributions that differ substantially from the
Boltzmann function. In order to capture the system’s dynamics
via classical trajectories, the quantized density matrix needs to
be converted to a phase space function. There are two similar
methods for performing such calculations: the linearized semi-
classical initial value representation1–3 (LS-IVR) (which is also
known as the Wigner method4,5 and which has also been derived
by linearizing the path integral6), where a phase space function
is obtained via the Wigner transform of the initial density, and
forward-backward semiclassical dynamics7–9 (FBSD), where
the phase space function is given by the coherent state trans-
form10 with appropriate corrections. The Wigner density is also
required in methods that employ quantum-classical Liouville
dynamics.11,12 Recently, our group has developed a quantum-
classical path integral (QCPI) methodology,13–16 which seems

promising as a rigorous simulation tool for simulating quantum
mechanical process large molecular or condensed phase sys-
tems. Unless zero-point energy can be neglected, QCPI calcula-
tions also require knowledge of the phase space distribution of
the degrees of freedom comprising the system’s environment.

The first step in all the methods mentioned above is the
evaluation of the required phase space transform of the density
operator, and considerable effort has been devoted to the
development of techniques for this task. Several approaches
are available for evaluating coherent state representations
of the density, including local harmonic approximations,17

semiclassical propagation in imaginary time,18 and numer-
ically exact path integral representations.19,20 Evaluation
of the Wigner function presents a more challenging task.
Various approximate schemes have been proposed, including
local21 and variationally optimized6 Gaussian approximations,
imaginary time semiclassical evolution,22 and the thermal
Gaussian approximation23,24 (which consists of frozen
Gaussian dynamics25 in imaginary time) along with extensions
that capture quantum corrections.26 These techniques have
been successfully applied to condensed phase systems.27–30

The Wigner transform4 of a density operator ρ̂ is given
by the Fourier-type integral

W (x0,p0) = 1
√

2π~

 ∞

−∞



x0 +

1
2∆x

�
ρ̂
�
x0 − 1

2∆x
�

× e−i p0∆x/~d∆x. (1.1)
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(We use one-dimensional notation for convenience; the
generalization of Eq. (1.1) to many dimensions is straightfor-
ward.) The oscillatory nature of the Fourier transform makes
numerical evaluation of the Wigner function an extremely
challenging task. In particular, the “sign problem” that arises
from the oscillatory Fourier factor prohibits the use of Monte
Carlo methods,31 leaving no practical alternatives for exact
evaluation of the integral in systems of many degrees of
freedom.

In this paper, we propose a very simple, approximate
method for obtaining the Wigner transform of a density
operator, which is applicable to a pure state as well as the
Boltzmann density. The basic idea is to use the exact Wigner
density for a zeroth order Hamiltonian to populate the phase
space of the system and to evolve these phase space points by
classical trajectories, gradually switching on the perturbation
potential. According to the classical adiabatic theorem, a
trajectory that lies on a phase space torus that corresponds
to a particular eigenstate will maintain a constant action,
remaining on the eigenstate of the evolving Hamiltonian as
long as the adiabatic switching procedure32,33 is carried out
very slowly. By adjusting the weight of each trajectory to
account for the change in the Boltzmann population resulting
from the energy change of the trajectory, we are able to
adiabatically evolve the zeroth order phase space density
to the one that closely approximates the Wigner function
of a more complex Hamiltonian. Since most uses of the
Wigner function are in connection with classical trajectories,
the adiabatic switching step is very easily incorporated in
such calculations and requires little additional effort. Perhaps,
the most appealing feature of our method is the simplicity
of the algorithm, which (unlike other methods, such as the
thermal Gaussian approximation23,24,26) is based exclusively
on classical trajectory input. Yet, we find the results to be
very accurate, and the resulting Wigner distribution is in all of
our test cases nearly indistinguishable from the one obtained
by accurate integration of Eq. (1.1). An additional benefit of
our method is that (by construction) the Wigner distribution
it generates is invariant under classical trajectory propa-
gation, leading to rigorous preservation of thermodynamic
averages.

In Sec. II, we motivate the idea, starting with eigenstates
of harmonic and anharmonic Hamiltonians and proceeding
to the thermal density matrix. Test calculations on various
one-dimensional and dissipative systems are presented in
Sec. III, and some concluding remarks are given in Sec. IV.

II. CLASSICAL ADIABATIC THEOREM AND WIGNER
DENSITY FOR PURE STATES

A. Harmonic oscillator eigenstates

Consider a harmonic oscillator H (0) of frequency ω0,

H (0) =
p2

2m
+

1
2

mω2
0x2, (2.1)

along with its ground state wavefunction Ψ(0)
0 of energy equal

to E(0)
0 =

1
2~ω0. The Wigner function for the density operator

���Ψ
(0)
0

 
Ψ

(0)
0
��� is given by the expression

W (0)
0 (x0,p0) = π−1 exp


−1
~
*
,
mω0x2

0 +
p2

0

mω0

+
-


. (2.2)

This function can be rewritten as

W (0)
0 (x0,p0) = π−1 exp *

,
−E(x0,p0)

E(0)
0

+
-
, (2.3)

where

E(x0,p0) = 1
2

mω2
0x2

0 +
p2

0

2m
(2.4)

is the energy of the classical system at x0,p0. Equation (2.3)
indicates that the Wigner density drops to 1/e of its maximum
value at phase space points x0,p0 whose energy equals
the ground state energy of the system. These points form
an ellipse, shown schematically in the Figure 1(a), whose
intersection with the position axis is the classical turning
points of the oscillator.

Next, consider a harmonic oscillator H of frequency
ω = αω0,

H =
p2

2m
+

1
2

mω2x2, (2.5)

for which the ground state energy is E0 =
1
2α~ω0. The phase

space points that correspond to this energy are shown in
Fig. 1(b). Compared to the ellipse for the oscillator with
frequency ω0, the new ellipse is squeezed by a factor of

√
α

along x and stretched by the same factor along the p axis.
However, the phase space area remains the same, equal to the
action of the ground state, i.e., S0 = S(0)

0 =
1
2~.

Now, suppose the harmonic oscillator H (0) is used as
the zeroth order Hamiltonian, while the target system is the
harmonic oscillator Hamiltonian H of frequency ω = αω0.
Imagine launching a trajectory from a phase space point
x0,p0 on the 1/e contour of the Wigner function for H (0),
i.e., with energy equal to 1

2~ω0, while gradually increasing
the oscillator frequency to αω0. If this process is carried out

FIG. 1. Deformation of energy boundary from the zeroth-order to the target
Hamiltonian in two cases. (a) and (b) Frequency doubling (α = 2) for a
harmonic oscillator. (c) and (d) Addition of anharmonic terms to a harmonic
oscillator.
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FIG. 2. Evolution of a trajectory for a harmonic system upon a slow doubling
of its frequency.

infinitely slowly, the classical adiabatic theorem guarantees
that the action of the trajectory will remain unchanged as
its energy slowly changes to 1

2~ω. Thus, the trajectory that
initially traversed the ellipse of Fig. 1(a) will eventually be
found to traverse the ellipse of Fig. 1(b). The evolution of such
a trajectory is shown in Figure 2 for a switching time interval
equal to 20 oscillation periods. (This switching time, which
is not sufficiently long for accuracy, is chosen for clarity of
illustration.)

If the above procedure is repeated with many trajectories
whose initial conditions trace out the ellipse of Fig. 1(a),
these trajectories will be found to trace out the ellipse of
Fig. 1(b) at the end of the adiabatic switching process. Thus,

the 1/e contour of the Wigner density for the zeroth order
Hamiltonian is transformed to the 1/e density contour of the
Wigner function that corresponds to the target Hamiltonian
H . The above argument can be extended to phase space
points selected to correspond to any density contour of the
Wigner function. Thus, one sees that the Wigner density of
the zeroth order Hamiltonian will be transformed exactly to
the correct Wigner density of the target harmonic system if
the perturbation potential is switched on infinitely slowly.

The above ideas can be extended to excited states of a
harmonic oscillator. The nth eigenfunction of H (0) is given in
terms of Hermite polynomials according to the expression

Ψ
(0)
n (x) =

(
mω0

π~22n(n!)2
)1/4

e−
mω0

2~ x2
Hn

(
mω0/~ x

)
. (2.6)

The corresponding density matrix is

⟨x ′|ρn |x ′′⟩ =
(

mω0

π~22n(n!)2
)1/2

e−
mω0

2~ (x′2+x′′2)

×Hn

(
mω0/~ x ′

)
Hn

(
mω0/~ x ′′

)
(2.7)

and its Wigner transform is

W (0)
n (x0,p0) = 1

√
2π~

(
mω0

π~22n(n!)2
) 1

2
e−

mω0
2~ x2

0

×


e−
mω0

8~ ∆x
2
0 Hn

(
mω0/~

(
x0 +

1
2
∆x0

))
×Hn

(
mω0/~

(
x0 −

1
2
∆x0

))
e−i p0∆x/~d∆x0.

(2.8)

Rescaling the coordinates as before, i.e., introducing
x = x0/

√
α (thus, ∆x = ∆x0/

√
α) and p =

√
α p0,

W (0)
n (x0,p0) = 1

√
2π~

(
mαω0

π~22n(n!)2
) 1

2
e−

mαω0
2~

x2
0
α


e−

mαω0
8~

∆x2
0

α Hn

(
mαω0/~

(
x0 +

1
2
∆x0

)
/
√
α

)
×Hn

(
mαω0/~

(
x0 −

1
2
∆x0

)
/
√
α

)
e−i p0∆x/~d(∆x0/

√
α)

=
1
√

2π~

(
mω

π~22n(n!)2
) 1

2
e−

mω
2~ x2


e−

mω
8~ ∆x

2
Hn

(
mω/~

(
x +

1
2
∆x

))
×Hn

(
mω/~

(
x − 1

2
∆x

))
e−i p0∆x/~d∆x. (2.9)

The last expression is recognized as Wn(x,p), the Wigner
function for the Hamiltonian of frequency ω = αω0.

B. Semiclassical eigenstates

Next, the “primitive” Wentzel-Kramers-Brillouin (WKB)
approximation to the wavefunction of a one-dimensional
anharmonic Hamiltonian,

e
i
~

 x
√

2m[E−V (x′)]dx′
2m[E − V (x)] . (2.10)

Evaluating the Wigner integral, Eq. (1.1), in the limit ~ → 0
via the stationary phase method, and using p(x + 1

2∆x)
+ p(x + 1

2∆x) ≃ 2p(x), one finds34 that the Wigner density
within the “primitive” WKB approximation has the form

δ
(
p −


2m[E − V (x)])

2m[E − V (x)] , (2.11)

i.e., the Wigner density is localized near the energy shell.
For a bound potential, the WKB wavefunction is a linear
combination of “primitive” wavefunctions. In this case, the
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Wigner density has been shown to be oscillatory near the
phase space ridge specified by the energy boundary.35

Consider again a point x0,p0 at the energy eigenvalue of
a zeroth order Hamiltonian H (0) (for example, the harmonic
approximation to the potential of H). Under the classical force
from H (0), the trajectory launched from this point traverses the
energy boundary p(x)2 = 2m (E − V (x)), tracing out a closed
curve of area equal to the action S(0)

n = (n + 1
2 )~ that specifies

the eigenstate. Upon switching on the perturbation H − H (0)
adiabatically, the trajectory deforms to the energy shell of the
full Hamiltonian, preserving the value of the action. By virtue
of the semiclassical Wigner transform, Eq. (2.11), it follows
that the endpoint of this trajectory will again specify a point
on the Wigner density ridge.

Based on the above ideas, we suggest that the adiabatic
switching process from the Wigner density of a reasonable
zeroth order Hamiltonian should yield a good approximation
to the Wigner distribution of the corresponding eigenstate of
an anharmonic target system. We point out that the adiabatic
switching procedure cannot account for subtle quantum
mechanical features of the distribution, such as the small
shift of its maximum away from the location of the potential
minimum which is often observed in the ground state of
asymmetric anharmonic systems.

C. Finite temperature

Last, consider the case of finite temperature. Again, we
start with a simple zeroth order Hamiltonian H (0), for which
the Boltzmann density is

ρ̂(0) =
(
Z (0))−1

e−βĤ
(0)
, (2.12)

and consider its spectral expansion in terms of energy
eigenstates,

ρ̂(0) =

n

e−βE
(0)
n

Z (0)
���Ψ

(0)
n

 
Ψ

(0)
n
��� . (2.13)

To motivate the procedure, we express the Wigner transform of
this density in terms of the Wigner functions of the individual
eigenstates,

W (0)(x0,p0) =
(
Z (0))−1 

n

e−βE
(0)
n W (0)

n (x0,p0). (2.14)

Imagine carrying out the adiabatic switching procedure
separately for each eigenstate. Upon switching on the
perturbation H − H (0) adiabatically, the phase space points
x0,p0 distributed according to W (0)

n will evolve to points x,p
with distribution that corresponds (approximately) to Wn.
Thus, the adiabatic switching procedure described so far will
evolve Eq. (2.14) to the distribution(

Z (0))−1 
n

e−βE
(0)
n Wn(x,p). (2.15)

However, the Wigner transform of the target density,

ρ̂ = Z−1e−βĤ , (2.16)

is given by the expression

W (x,p) = Z−1

n

e−βEnWn(x,p). (2.17)

One observes that the Wigner densities Wn resulting from
the adiabatic switching procedure need to be weighed by
the Boltzmann factors corresponding to the energies of the
full Hamiltonian, yet, according to Eq. (2.15), the adiabatic
switching trajectories carry weights that correspond to the
energies of the zeroth order Hamiltonian. To correct this, we
need to readjust the density at the point x,p reached by each
trajectory.

The easiest procedure for achieving this task is to include
the following classical rescaling factor:

fCL

(
E(x,p),E(0)(x0,p0)

)
= e−β(E(x,p)−E(0)(x0,p0)). (2.18)

If many quantum states are occupied at the given temperature,
the density adjustment given in Eq. (2.18) leads to state
occupations consistent with the Boltzmann distribution of
the target Hamiltonian. One notices that Eq. (2.18) does not
account for the ratio of partition functions Z (0)/Z , because
the partition functions are not readily available. However, this
ratio is a constant and is easily accounted for by normalization.

However, it is easy to see that the classical weight
rescaling procedure described above is destined to fail as the
temperature approaches zero. In that case, the density operator
approaches the ground eigenstate, which is adiabatically
transformed correctly without adjustment of trajectory
weights. Clearly, the reason for the failure of the classical
Boltzmann weight prescription is energy quantization. In
the absence of information about the level spacings of the
target system, one can approximately remedy this situation
by introducing a rescaling factor that depends on the system’s
ZPE, which is often available for the zeroth order as well as
the target Hamiltonian. The expression for the Wigner density
of a harmonic oscillator,

Wharm(x,p) = (~π)−1 tanh
� 1

2~ωβ
�

× e
− tanh

(
1
2 ~ωβ

)(mωx2/~+p2/mω~)
= (~π)−1 tanh

� 1
2~ωβ

�
e− tanh(βE0)(E(x,p)/E0),

(2.19)

suggests that the proper rescaling factor has the form

fZPE

(
E(x,p),E(0)(x0,p0)

)
= exp *

,
− tanh(βE0)E(x,p)E0

+ tanh(βE(0)
0 )E

(0)(x0,p0)
E(0)

0

+
-
.

(2.20)

Thus, the adiabatic switching procedure with the ZPE-based
rescaling factor produces (apart from a normalization factor)
the exact Wigner density at all temperatures in the case
of a harmonic potential. In the limit of high temperature,
βE0 ≪ 1, this expression reverts to the classical rescaling
factor, Eq. (2.18), which is correct for any Hamiltonian. Since
most potentials become nearly harmonic at low temperatures,
we expect the ZPE-based rescaling procedure to be accurate at
low temperatures and also at high temperature for anharmonic
systems. Thus, the largest errors are expected at intermediate
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temperatures for systems where the energy level spacings of
the target Hamiltonian deviate significantly from the harmonic
structure. Our numerical tests on strongly anharmonic systems
indicate that the ZPE-based procedure is quite accurate at all
temperatures. Further, these results (presented in Sec. III)
suggest that the simpler classical rescaling procedure yields
very satisfactory results under most conditions of practical
interest, i.e., systems of many degrees of freedom, where full
evaluation of the Wigner integral, Eq. (1.1), is impractical.

These systems have a high density of states at typical
temperatures such that the classically derived scaling factor is
sufficiently accurate.

To summarize the procedure, the Wigner density of the
target system is obtained from adiabatic transformation of a
zeroth order Wigner density with weight adjustment,

W (x,p) = N W (0)(x0,p0) f
(
E(x,p),E(0)(x0,p0)

)
, (2.21)

where the weight rescaling factor is given by the classical

FIG. 3. Contour plots of the phase space density, along with its integrals, the position and momentum density, as obtained by the classical Boltzmann expression
(top left contour plot and green dashed line), the exact basis set calculation (top right contour plot and black markers), the adiabatic switching method with
classical rescaling (bottom left contour plot and red line), and the adiabatic switching method with ZPE rescaling (bottom right contour plot and blue line) for
the anharmonic oscillator described in Sec. III. (a) ~ωhβ = 3

√
2/5. (b) ~ωhβ =

√
2. (c) ~ωhβ = 3

√
2/2. (d) ~ωhβ = 3

√
2.
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FIG. 3. (Continued.)

or the ZPE form, and N is a normalization constant. Since
the Wigner density is usually generated for the purpose of
calculating time-dependent averages of the type

⟨A⟩t =


dx0


dp0W (x0,p0)A(xt,pt)
dx0


dp0W (x0,p0) , (2.22)

the normalization factor is evaluated concurrently with the
dynamical average.

Quasiclassical methods often are concerned about the
inconsistency of generating the initial density by quantum
mechanical procedures (whenever this task is feasible)

and carrying out the dynamics via classical trajectories,
as quantized distributions are not invariant under classical
propagation.36,37 By its nature, the adiabatic switching
construction of the Wigner distribution guarantees its
invariance under classical dynamics. This desirable feature
ensures exact preservation of thermodynamic properties.

III. APPLICATION TO MODEL SYSTEMS

In this section, we present numerical examples that
illustrate the procedure described in Sec. II.
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A. One-dimensional anharmonic oscillator

In the first example, we choose the potential

V (x) = x2 − 0.2x3 + 0.015x4. (3.1)

The zeroth order system is chosen as a harmonic oscillator of
frequencyωh =

√
2. Figure 3 shows the (renormalized) Wigner

function produced via the adiabatic switching method, both
with classical and with ZPE rescaling, at various temperatures.
At each chosen temperature, we present the obtained phase
space distribution, along with the position and momentum
distributions,

Pp(x) =


dp0W (x0,p0), Px(p) =


dx0W (x0,p0). (3.2)

These results are compared to accurate calculations generated
via a basis set calculation and to the classical Boltzmann
distribution.

In spite of the very large anharmonicity, it is seen that
the adiabatic transform reproduces the Wigner function rather
faithfully at all temperatures. It is particularly encouraging
that both the classical and the ZPE weight rescaling factors
produce accurate results even far from their optimal regimes.
The only observable flaw is the absence of a shift in the
maximum of the phase space distribution away (toward the
right) of the potential minimum, which is seen in the low-
temperature distributions obtained by a basis set calculation.
This is so because the highest density contours of the Wigner
function correspond to trajectories with energies near the
potential minimum.

To quantify the respective accuracy attained by the two
weight rescaling factors, we show in Figure 4 the variance of
the position space distribution as a function of temperature.
The simple adiabatic switching with classical rescaling is
seen to produce quantitative results at all but the lowest

FIG. 4. Position variance for the one-dimensional anharmonic system. Solid
black line: basis set calculation. Dashed orange line: classical Boltzmann
result. Red squares: adiabatic switching method with classical rescaling. Blue
circles: adiabatic switching method with ZPE rescaling. Green triangles:
adiabatic switching method without rescaling.

temperatures. The adiabatic switching procedure with ZPE
rescaling is quantitatively accurate at all temperatures. The
importance of the rescaling factor becomes apparent by
presenting the raw adiabatic switching results. It is seen
that in the absence of weight rescaling, the method fails to
produce accurate results at moderate to high temperatures.

Last, we demonstrate the time invariance of the
distribution generated via the adiabatic switching procedure
in Figure 5, which shows the distribution initially and also
after classical propagation by 10, 100, and 1000 vibrational
periods. Since no change of the distribution takes place,
thermodynamic properties will be strictly conserved.

FIG. 5. Time invariance of the Wigner
distribution generated by the adiabatic
switching method for ~ωβ = 3

√
2/2 for

the anharmonic oscillator described in
Sec. III. Top left: initial distribution.
Top right, bottom left, and bottom right:
distribution from classical propagation
after 10, 100, and 1000 vibrational
periods.
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FIG. 6. Position correlation function of a harmonic oscillator coupled to a harmonic bath. Black solid line: exact quantum mechanical results. Dashed blue
line: classical trajectory results with initial conditions sampled from the Boltzmann density. Red markers: classical results with initial conditions sampled
from the Wigner density generated by the adiabatic switching procedure with classical Boltzmann scaling. (a) ξ = 0.2; ~Ωβ = 5; (b) ξ = 0.6; ~Ωβ = 5;
(c) ξ = 1.2; ~Ωβ = 0.4; (d) ξ = 1.2; ~Ωβ = 5.

Finally, we use the adiabatic switching procedure to gen-
erate the Wigner function and dynamics for a harmonic system
coupled to a dissipative bath. The Hamiltonian has the form

H = H (0) −

j

cjsx j, (3.3)

H (0) =
p2
s

2m
+

1
2

mΩ2s2 +

j

p2
j

2m
+

1
2

mω2
jx

2
j, (3.4)

where m = 1, Ω = 2. The frequencies and system-bath
coupling coefficients are collectively specified by the spectral
density.38 We use the Ohmic form,

J(ω) = π

2
~ξωe−ω/ωc, (3.5)

with the cutoff frequency ωc = 1.25Ω. The bath was
discretized using 60 oscillators with frequency chosen
according to the logarithmic discretization of the spectral
density39 with ωmax = 4ωc. The calculations were performed
at four parameter sets, for which the system dynamics changes
from weakly damped oscillations to near-monotonic decay.

The Wigner function of the separable zeroth order
Hamiltonian was generated by using Monte Carlo sampling31

to generate phase space points distributed according to the
analytic expression for the 122-dimensional Wigner density.
The system-bath coupling was switched on adiabatically over
a time length of around 32 oscillations. Trajectory weight
rescaling was performed using the classical Boltzmann-
weighted procedure.

Once the Wigner distribution was constructed, dynamical
results were obtained by continuing the trajectories under the
forces specified by the system-bath Hamiltonian. We report
the real part of the position correlation function of the system,

C(t) = ⟨s(0)s(t)⟩ (3.6)

obtained from the Wigner function according to the classical
procedure

Re C(t) ≃


ds0


dps,0


j


dx j,0

×


dpj,0W
�
s0,ps,0,{x j,0,pj,0}� s0s(t). (3.7)

Exact results for comparison were obtained analytically.
Figure 6 shows the adiabatic switching Wigner results,

along with exact quantum mechanical results for this
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Hamiltonian. Also shown are results obtained by approxi-
mating the Wigner function by the classical Boltzmann phase
space density. It is seen that the Boltzmann density severely
underestimates the magnitude of the correlation function
because of its neglect of zero-point energy. Even though some
of the calculations were performed at a very low temperature
with respect to the frequency of the system (and the majority of
bath oscillators), the classical Boltzmann-weighted procedure
produced excellent results. This is so because the large number
of degrees of freedom leads to a high density of states. These
findings suggest that the simple adiabatic switching procedure
is sufficiently accurate for polyatomic systems.

IV. DISCUSSION AND CONCLUDING REMARKS

The idea of adiabatic switching, which follows from
the adiabatic theorem of classical mechanics, is very
old.32 More recently, adiabatic switching was formulated
as a trajectory-based procedure for generating semiclassical
energy eigenvalues.33 Even though the idea is strictly valid
only when the state of interest is associated with a torus in the
full phase space of the system, numerical studies33 have shown
the method to be quite robust even in the presence of chaotic
dynamics. However, practical issues are often encountered due
to separatrix crossing or when resonant states are present; thus,
special care must be taken to choose the initial Hamiltonian
in a way that avoids such crossings, whenever possible.40–42

Adiabatic switching has been applied to calculate vibrational
energies in molecules with several degrees of freedom.43–45

The adiabatic switching procedure described in this paper
is a simple approximate but quite accurate procedure for
generating the Wigner transform of the density operator that is
valid for pure states or at finite temperature. Because the target
density is the Boltzmann operator (or, at zero temperature,
the ground state), all degenerate states are to be included,
and thus, resonant states do not present a problem. Even
though it is conceivable that the Wigner density of a strongly
anharmonic system may have small negative parts even at
zero temperature, we have not encountered this situation in
any of the strongly anharmonic systems we investigated. At
finite temperatures, we expect any small-area negative regions
of individual eigenstates to be washed out by the Boltzmann
averaging procedure; thus, we do not anticipate the Wigner
distribution generated by a positive zeroth order density to
lack important structure.

The adiabatic switching based method of generating
the Wigner distribution is very easy to implement, as it
requires only classical trajectory integration without additional
information on potential derivatives. Each trajectory employed
in the adiabatic switching process can subsequently continue
to be propagated in time under the full Hamiltonian to yield
dynamical information. The Wigner distribution produced

through the adiabatic switching procedure is invariant under
classical propagation, preserving thermodynamic averages.
Our numerical tests suggest that the adiabatic switching
method is also quite accurate under a variety of conditions.
Thus, the method is ideally suited for quasiclassical trajectory
calculations and also for calculating the phase space
distribution in quantum-classical calculations.
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